Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (5): 403-409    DOI:
Research Articles Current Issue | Archive | Adv Search |
MONITORING THE PITTING SUSCEPTIBILITY OF AUSTENITIC STAINLESS STEEL IN NaCl SOLUTION BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY
XU Shan,DU Nan,ZHAO Qing,YE Mingyang
Key Laboratory for NDT Technology of the Ministry of Education, Nanchang Hangkong University, Nanchang 330063
Download:  PDF(1413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The pitting susceptibility of 1Cr18Ni9Ti、304 and 316 austenitic stainless steel in 3.5 %NaCl solution was monitored by potential dynamic polarization and electrochemical impedance spectroscope. The pitting induction time (τ) and in-situ changes of electrode surface for the three types of materials in 3.5 %NaCl solution were monitered by electronic speckle pattern interferometry (ESPI) and the chrono amperometry. The results indicated that, bright speckles in ESPI images show pitting corrosion occurring on metal surface. The speckles in ESPI were caused by the pitting corrosion products. The value of pitting induction time (τ) for 1Cr18Ni9Ti and 304 steel were 1 s and 9 s. The value of pitting induction time (τ) for 316 steel was more than 50 s. The results of ESPI showed that, in the 3.5 %NaCl solution, the pitting susceptibility of 1Cr18Ni9Ti was the worst of the three types of materials, and the 316 steel was the best. The result of ESPI was in agreement with that of potential dynamic polarization and electrochemical impedance spectroscope. ESPI can be used as a laboratory technique to monitor the initial pitting susceptibility of metals.
Key words:  austenitic stainless steel      pitting corrosion      electronic speckle pattern interferometry (ESPI)      electrochemical method     
Received:  11 August 2009     
ZTFLH: 

TG142

 

Cite this article: 

XU Shan,DU Nan,ZHAO Qing,YE Mingyang. MONITORING THE PITTING SUSCEPTIBILITY OF AUSTENITIC STAINLESS STEEL IN NaCl SOLUTION BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY. J Chin Soc Corr Pro, 2010, 30(5): 403-409.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I5/403

[1] Hu L H,Du N,Wang M F,et al.Pitting electrochemical features of 1Cr18Ni9Ti stainless steel in acidic NaCl solution [J].Failure Anal. Prev., 2006, 1(3): 6-9     (胡丽华,杜楠,王梅丰等.1Cr18Ni9Ti不锈钢在酸性NaCl溶液中的点蚀电化学特征 [J]. 失效分析与预防, 2006, 1(3): 6-9) [2] Zhang J Q,Zhang Z,Wang J M, et al.Analysis and application of electrochemical noise-Ⅰ.Theory of electrochemical noise analysis [J].J.Chin.Soc.Corros.Prot., 2001,21(5):310-320     (张鉴清,张昭,王建明等.电化学噪声的分析与应用-Ⅰ.电化学噪声的分析原理 [J].中国腐蚀与防护学报,2001,21(5):310-320) [3] Butter J N,Leendertz J A.Speckle pattern and holographic techniques in engineering metrology [J].Opt. Laser Technol.,1971,3(36):26-30 [4] Silva Gomes J F,Monteiro J M.NDI of interfaces in coating systems using digital interferometry [J].Mech. Mater.,2000,3(32):837-843 [5] Wang M F,Du N,Li X G,et al.Monitoring initial pitting corrosion of 45 steel in NaCO3-NaCl solution by ESPI [J].J.Chin.Soc.Corros.Prot.,2009,29(3):210-214     (王梅丰,杜楠,李晓刚等.利用电子散斑干涉技术研究45碳钢在NaCO3-NaCl体系中的早期点蚀行为 [J].中国腐蚀与防护学报,2009,29(3):210-214) [6] Wang M F.Study on initial pitting corrosion behaviors and mechanisms of metals using electronic speckle pattern interferometry [D].Beijing:University of Science and Technology Beijing,2008     (王梅丰.利用激光电子散斑研究金属点蚀早期腐蚀行为及机理 [D].北京:北京科技大学,2008) [7] Cao C N.Introduction of Electrochemical Impedance Spectroscopy [M].Beijing:Science Press,2002:190-192     (曹楚南.电化学阻抗谱导论 [M].北京:科学出版社,2002:190-192) [8] Li J F,Zhang C,Cheng Y L,et al.Electrochemical corrosion characteristics of Al-Li alloy in NaCl solution [J].Acta Metal.Sin., 2002,38(7):760-764     (李劲风,张昭,程英亮等.NaCl溶液中Al-Li合金腐蚀过程的电化学特征 [J]. 金属学报,2002,38(7):760-764) [9] Wang M F,Li X G,Du N,et al.Direct evidence of initial pitting corrosion [J].Electrochem. Commun.,2008,10(7):1000-1004 [10] Wang M F,Du N,Li X G,et al.Initial stage monitoring of pitting corrosion of 1Cr18Ni9Ti stainless steel in sodium chloride solution using ESPI [J].Corros. Prot.,2009,30(1):29-31      (王梅丰,杜楠,李晓刚等.激光电子散斑干涉技术监测1Cr18Ni9Ti不锈钢在氯化钠溶液中的早期点蚀行为 [J].腐蚀与防护,2009,30(1):29-31)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[11] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[13] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[14] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
No Suggested Reading articles found!