Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (3): 197-202    DOI:
Research Articles Current Issue | Archive | Adv Search |
PITTING CORROSION OF HIGH STRENGTH ALUMINUM ALLOYS IN SALT SPRAY TEST
CUI Jihong1,2, CAI Jianping2, JIA Chengchang1
1. School of Materials Science and Engineering, University of Science &Technology Beijing, Beijing 100083
2. Beijing Institute of Aeronautical Materials, Beijing 100095
Download:  PDF(2289KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Salt fog spray test is used to accelerate the corrosion of 7B04 aluminum alloy. The pitting corrosion of this alloy was investigated by using metallographic method and localized electrochemical impedance spectroscopy (LEIS). It was concluded that the corrosion rate of the alloy increased sharply, but was retarded at the middle stage of exposure. The maximum depth of the pitting was linearly growing in the whole process. The pitting mechanism was mainly attributed to the dissolving the surrounding matrix of cathode-phase particles, dissolving aluminum itself or secondary pitting of Cu particles which is the corrosion residues. While the cathode phase of AlCu or AlCuMg second-phase particles was the main initiation cause. Localized electrochemical impedance spectroscopy (LEIS) which is suitable to follow changes in the dissolution kinetics during pit growth, could provide valuable information on the changes of the impedance on a small area.

Key words:  pitting corrosion      aluminum alloy      salt spray test      localized electrochemical impedance spectroscopy(LEIS)      maximum pit depth     
Received:  20 February 2009     
ZTFLH: 

TG172.3

 
Corresponding Authors:  CAI Jianping     E-mail:  jpcai2001@yahoo.com.cn

Cite this article: 

CUI Jihong, CAI Jianping, JIA Chengchang. PITTING CORROSION OF HIGH STRENGTH ALUMINUM ALLOYS IN SALT SPRAY TEST. J Chin Soc Corr Pro, 2010, 30(3): 197-202.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I3/197

[1] Li J F, Zheng Z Q, Ren W D. Mechanism of action of second-phase on the localized corrosion of aluminum alloys [J]. J. Mater.,2005, 19(2): 81-83
  (李劲风,郑子 ,任文达.第二相在铝合金局部腐蚀中的作用机制 [J].材料导报,2005,19(2):81-83)
[2] Hu L H, Du N, Wang M F, et al. Monitoring the initial pitting behaviors of 1Cr18Ni9Ti stainless steel by electrochemical noise and electrochemical impedance spectroscopy [J]. J. Chin. Soc. Corros.Proc., 2007, 27(4): 233-237
  胡丽华,杜楠,王梅丰等. 电化学噪声和电化学阻抗谱监测1Cr18Ni9Ti不锈钢的初期点蚀行为 [J]. 中国腐蚀与防护学报, 2007, 27(4):233-237  浏览
[3] Zhang Z, Zhang J Q, Wang J M. Pitting corrosion of Al2024-T3 in sodium chloride solution [J]. Trans. Nonferrous Met. Soc. China, 2001,11(5): 748-753
[4] Campestrini P, Van Westing E P M, De Wit J H W. Influence of surface preparation on performance of chromate conversion coatings on Al clad 2024 aluminum alloy-Part II: EIS investigation [J]. Electrochem. Acta, 2001, 46(17):2631-2647
[5] Shi Y Y, Zhang Z, Su J X, et al. EIS study on 2024-T3 aluminum alloy corrosion in simulated acid rain under cyclic wet-dry conditions [J]. Mater. Corros, 2005, 56(10):701-706
[6] Zheludkevich M L, Yasakau K A, Poznyak S K, et al. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminum alloy [J]. Corros. Sci, 2005, 47(12):3368-3383
[7] Moutarlier V, Gigandet M P, Normand B, et al. EIS characterization of anodic films formed on 2024 aluminum alloy in sulfuric acid containing molybdate or permanganate species [J]. Corros. Sci, 2005, 47(4):937-951
[8] Annergren I, Zou F. Application of localized electrochemical techniques to study kinetics of initiation and propagation during pit growth [J]. Electrochim. Acta, 1999, 44:4383-4393
[11] Zhang N, Sun Z H, Zhang Q, et al. Application of local electrochemical impedance spectroscopy(LEIS) on accessing the environmental failure of organic coatings [J]. Equip. Environ. Eng., 2007, 4(1): 75-78
  (章妮,孙志华,张琦等.局部阻抗测试技术在评定有机涂层环境失效中的应用 [J].装备环境与工程,2007,4(1):75-78)
[12] Wu L, Sun Q, Guo Y N. Accelerated corrosion tests of high strength 7075 aluminum alloy in salt water spray [J]. J. Mech. Strength, 2006, 28(1): 138-140
  (毋玲,孙秦,郭英男.高强度铝合金盐雾加速腐蚀试验研究 [J]. 机械强度,2006,28(1):138-140)
[13] Buchheit R G, Grant R P, Hlava P F. Local dissolution phenomena associated with S phase(Al2Cu Mg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc, 1997, 144(8):2621-2628
[14] Wang Y W, Wang Y F, Huang X P, et al. A simplified maximum pit depth model of mild and low alloy steels in marine immersion environments [J]. J. Ship Mech., 2008, 12(3): 403-417
[15] Zhu D Q, Van Ooij W. Corrosion protection of AA2024-T3 by bis-[3-(tri ethoxysilyl)propyl] tetra sulfide in neutral sodium chloride solutionPart 1: corrosion of AA2024-T3 [J]. Corros. Sci, 2003, 45:2163-2175
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[9] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[10] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[11] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[12] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[13] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[14] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
No Suggested Reading articles found!