Please wait a minute...
J Chin Soc Corr Pro  2007, Vol. 27 Issue (5): 257-262     DOI:
Research Report Current Issue | Archive | Adv Search |
Effectiveness of Cathodic Protection under Simulated Disbonded Coating on Pipelines
;;;
中国科学院金属研究所
Download:  PDF(389KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The local potential and pH along a crevice simulating disbonded coating on pipelines were measured using microelectrodes.The effectiveness of cathodic protection (CP) in the local environment and the effects of applied cathodic potential, geometry of the crevice and solutio conductivity were investigated. The results showed that the IR drop in the disbondment mainly occurred in the vicinity of the opening. The distance effectively protected by CP increased with the decreasing applied potential. However, hydrogen evolution had a reverse effect when an overprotection potential was applied. The additional effct of CP was shown to be the modification of the local environment , such as increase of pH and conductivity of solution, which was beneficial to corrosion controlling as well as direct polarization of the exposed steel at the holiday.
Key words:  cathodic protection      pipeline      coating      crevice corrosion      microelectrode      IR drop     
Received:  12 April 2006     
ZTFLH:  TG174.41  
  TG172.4  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

;. Effectiveness of Cathodic Protection under Simulated Disbonded Coating on Pipelines. J Chin Soc Corr Pro, 2007, 27(5): 257-262 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2007/V27/I5/257

[1]Toncre A C.On achieving polarization beneath unbonded pipe coat-ings[J].Mater.Performance,1984,22-27
[2]Song F M,Kirk D W,Graydon J W,et al.Corrosion under dis-bonded coatings having cathodic protection[J].Mater.Performance,2003,42(9):24-26
[3]Beavers J A,Thompson N G.Corrosion beneath disbonded pipelinecoatings[J].Mater.Performance,1997,36(4):13-19
[4]Sabde G,Gan F,Chin D T.Cathodic protection of undergroundpipeline against crevice corrosion:a review[J].J.Chin.Inst.Chem.Eng.,1993,24(6):417-429
[5]Li Z F,Mao X H,Gan F X.Potential distribution inside a ca-thodic protection crevice[J].J.Chin.Soc.Corros.Prot.,2000,20(3):129-134(李正奉,毛旭辉,甘复兴.阴极保护下缝隙内的电位分布[J].中国腐蚀与防护学报,2000,20(3):129-134)
[6]Brousseau R,Qian S.Distribution of steady-state cathodic cur-rents underneath a disbonded coating[J].Corrosion,1994,50(12):907-911
[7]Gan F,Sun Z W,Sabde G,et al.Cathodic protection to mitigateexternal corrosion of underground steel pipe beneath disbondedcoating[J].Corrosion,1994,50(10):804-816
[8]Li S Y,Kim Y G,Kho Y T,et al.Statistical approach to corro-sion under disbonded coating on cathodically protected line pipesteel[J].Corrosion,2004,60(11):1058-1071
[9]Parkins R,Belhimer E,Blanchard W.Stress-corrosion crackingcharacteristics of a range of pipeline steels in carbonate-bicarbon-ate solution[J].Corrosion,1993,49(12):951-966
[10]Charles E A,Parkins R N.Generation of stress-corrosion crack-ing environments at pipeline surfaces[J].Corrosion,1995,51(7):518-527
[11]Wang M,Yao S.Carbonate-melt oxidized iridium wire for pH sens-ing[J].Electroanalysis,2003,15(20):1606-1615
[12]Fessler R R,Markworth A J,Parkins R N.Cathodic protectionlevels under disbonded coatings[J].Corrosion,1983,39(1):20-25
[13]Husock B,Wilson R.Potentials and hydrogen evolution on coatedpipe[J].Mater.Performance,1984,9:26-30
[14]Perdomo J J,Song I.Chemical and electrochemical conditions onsteel under disbonded coatings:the effect of applied potential,so-lution resistivity,crevice thickness and holiday size[J].Corros.Sci.,2000,42(8):1389-1415
[15]Kajiyama F,Okamura K.Evaluating cathodic protection reliabili-ty on steel pipe in microbiologically active soils[J].Corrosion,1999,55(1):74-80
[16]Yan M C,Weng Y J.High pH environment under disbonded coat-ing on cathodic protected pipelines[J].J.Chin.Soc.Corros.Prot.,2004,24(2):95-99(闫茂成,翁永基.阴极保护管线破损涂层下高pH环境形成规律[J].中国腐蚀与防护学报,2004,24(12):95-99)
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[7] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[8] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[9] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[10] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[11] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[12] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[13] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[14] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[15] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
No Suggested Reading articles found!