Please wait a minute...
J Chin Soc Corr Pro  2007, Vol. 27 Issue (2): 74-79     DOI:
Research Report Current Issue | Archive | Adv Search |
EIS CHARACTERISTICS OF 304 STAINLESS STEEL DURING INTERGRANULAR CORROSION
;;
天津大学材料学院
Download:  PDF(1143KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electrochemical impedance spectroscopy (EIS) measurements were performed on sensitized and solutioned 304 stainless steels respectively in the process of Electrochemical potentiodynamic reactivation (EPR) polarization in 0.5mol/L H2SO4+0.01mol/L KSCN solution.The variation rules of impedance resistance in process of EPR polarization were analyzed.It was found that the EIS spectra of the stainless steels during EPR polarization exhibited features of active dissolution,activation-passivation,passivation and reactivation.Before reactivation,the two kinds of stainless steels had the same EIS characteristics.In the reactivating region the passivated film dissolved partially and the impedance modulus of the sensitized stainless steel was one magnitude order smaller than that of the solution-treated stainless steel,indicating that intergranular corrosion had occurred on the surface of the sensitized stainless steel.In addition two capacitive loops appeared in the EIS of the sensitized stainless steel and it was quite interesting that the second arc at the low frequency range was actually a negative resistance capacitive loop.These results may provide essential basis for detecting intergranular corrosion susceptibility of stainless steel by electrochemical impedance spectroscopy.
Key words:  stainless steel      intergranular corrosion      electrochemical impedance spectroscopy      
Received:  31 October 2005     
ZTFLH:  TG174.3  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. EIS CHARACTERISTICS OF 304 STAINLESS STEEL DURING INTERGRANULAR CORROSION. J Chin Soc Corr Pro, 2007, 27(2): 74-79 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2007/V27/I2/74

[1]Fang Z,Zhang Y L,Wu Y S.Detecting susceptibility to intergranularcorrosion of 308L stainless steel by EPR method[J].Corros.Sci.Prot.Technol.,1996,8:87-93(方智,张玉林,吴荫顺等.电化学动电位再活化法评价308L不锈钢的晶间腐蚀敏感性[J].腐蚀科学与防护技术,1996,8:87-93)
[2]Fang Z,Wu Y S,Zhang L,et al.Application of the modified electro-chemical potentiodynamic reactivation method to evaluate intergranu-lar corrosion susceptibility of stainless steel[J].Corrosion,1998,54:339-346
[3]Matula M,Hyspecka L,Svoboda M,et al.Intergranular corrosion ofAISI 316L steel[J].Mater.Charact.,2001,46:203-210
[4]Huang C A,Chang Y Z,Chen S C.The electrochemical behavior ofaustenitic stainless steel with different degrees of sensitization in thetranspassive potential region in 1 mol/L H2SO4containing chloride[J].Corros.Sci.,2004,46:1501-1513
[5]Cihal C,Desestret A,Froment M,et al.Tests for evaluation of sensi-bility of stainless steels to intergranular corrosion[A].Proc.5th Eu-ropean Corros.Cong[C].Paris,1973,249-255
[6]Qin L Y,Dong Z D.Application of electrochemical method to evalu-ate intergranular corrosion susceptibility of stainless steels[J].TaiGang Science and Technology,1991,3:80-86(秦丽雁,董征东.用电化学方法测量不锈钢晶间腐蚀的敏感性[J].太钢科技,1991,3:80-86)
[7]Conde A,Damborenea J de.Evaluation of exfoliation susceptibility bymeans of the electrochemical impedance spectroscopy[J].Corros.Sci.,2000,42:1363-1377
[8]Yu F Z,Ma D Z,Liu G R,et al.Corrosion and Protection HandbookI.Corrosion theories tests and detections[M].Beijing:Chemical In-dustry Press,1990,70-80(于福州,马德章,刘国瑞等.腐蚀与防护手册第一册,腐蚀理论试验及监测[M].北京:化学工业出版社.1990,70-80)
[9]Bastidas J M,Lpez MF,Gutirrez A,Torres C L.Chemical analysisof passive films on type AISI 304 stainless steel using soft X-rayabsorption spectroscopy[J].Corros.Sci.,1998,40:431-438
[10]Cao C N,Zhang J Q.An Introduction to Electrochemical ImpedanceSpectroscopy[M].Beijing:Science Press,2002,45-75(曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.45-75)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[12] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
No Suggested Reading articles found!