Please wait a minute...
J Chin Soc Corr Pro  2003, Vol. 23 Issue (3): 179-182     DOI:
Research Report Current Issue | Archive | Adv Search |
IN-SITU INVESTIGATION OF HEALING ON HYDROGEN-ATTACKEDCRACK IN STEEL BY HIGH-TEMPERATURE MICROSCOPE
Chaofang Dong;Jing Xv;Xiaogang Li
北京科技大学
Download:  PDF(141KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The in-situ observation of hydrogen-attacked cracks healing in carbon steel had been done by high-temperature microscope.The whole cracks healing process was recorded at the same time.The results show that the c racks became obviously thinner when heated under 630℃.The escaping of methane a nd inner crack exposure on specimen surface make a certain difference between th is experiment and true condition,the analysis indicates the cracks healing tempe rature in experiment is lower than actual system.The healing of hydrogen attacke d cracks is closely related to heat diffusion of Fe and C atoms in steel.The dri ving force of crack healing results from the plastic deforming energy Es i nduced by the growth of hydrogen attacked bubbles or cracks.The critical conditi on of healing of bubbles or cracks is Es ≥2γ/r (where γ is the surface tension,r is the radius of bubbles or half length of crack).
Key words:  high-temperature microscope      in-situ      hydrogen attack      crack      healing      
Received:  05 November 2001     
ZTFLH:  TG111.91  
  TG142.71  
Corresponding Authors:  Chaofang Dong     E-mail:  dongchf@sina.com

Cite this article: 

Chaofang Dong; Jing Xv; Xiaogang Li. IN-SITU INVESTIGATION OF HEALING ON HYDROGEN-ATTACKEDCRACK IN STEEL BY HIGH-TEMPERATURE MICROSCOPE. J Chin Soc Corr Pro, 2003, 23(3): 179-182 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2003/V23/I3/179

[1] ZhouBenlian,WangYuqing,ChengHuiming,etal.,Materialsbionichealingandrecovery[A].TheSeminarofMaterialsSelf-HealingandSelf-Recovery[C].Beijing,1997(周本濂,王玉庆,成会明等.材料的仿生愈合与恢复[A].材料自愈合、自恢复学术研讨会资料[C].北京,1997
[2] JamesDPowers,AndreasMGlaeser.High-temperaturehealingofcrack-likeflawsintitaniumion-implantedsapphire[J].J .Am.CeramicSoc.,1993,76(9):2225-2234
[3] WeiDongbin,HanJingtao,XieJianxin,etal.,Experimentalstudyoninnercrackhealinginsteelduringhotplasticdeforming[J].ActaMetall.Sin.,2000,36(6):622-625(韦东滨,韩静涛,谢建新等.热塑性变形条件下钢内部裂纹愈合的实验研究[J]金属学报,2000,36(6):622-625)
[4] LiShen,GaoKewei,QiaoLijie,ChuWuyang.MoleculardynamicssimulationoftheroleofdislocationsinmicrocrackHealing[J].Ac taMechanicalSinica(EnglishSeries),2000,16(4):364-373
[5] SungRChoi,VeenaTikare.Crackhealingofaluminawitharesid ualglassyphase:strength,fracturetoughnessandfatigue[J].Mater.Sci.Eng.,A171(1993):77-83
[6] ZhouYizhou,XiaoSuhong,GanYang,etal.Thehealingofquenchedcrackincarbonsteelunderelectropulsing[J].ActaMetall.Sin.,2000,36(1):43-45(周亦胄,肖素红,甘阳等.脉冲电流作用下碳钢淬火裂纹的愈合[J].金属学报,2000,36(1):43-45)
[7] YuZongsen.HydrogenAttackofSteel[M ].Beijing:ChemicalIn dustryPress,1987(余宗森.钢的高温氢腐蚀[M].北京:化学工业出版社,1987)
[8] SongWeixi.Metallography[M ].Beijing:MetallurgyIndustryPress,1982(宋维锡.金属学[M ].北京:冶金工业出版社,1987)
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] ZHANG Yong,FAN Weijie,ZHANG Taifeng,WANG Andong,CHEN Yueliang. Review of Intelligent Self-healing Coatings[J]. 中国腐蚀与防护学报, 2019, 39(4): 299-305.
[8] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[9] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[11] Xuekai TIAN, Hailong WANG, Xudong CHENG, Xiaoyan SUN. Effect of Crack Characteristics on Chloride Transport in Concrete: An Overview[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[12] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[13] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[14] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[15] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
No Suggested Reading articles found!