Please wait a minute...
J Chin Soc Corr Pro  2003, Vol. 23 Issue (1): 30-33     DOI:
Research Report Current Issue | Archive | Adv Search |
THE EFFECT OF SALTS ON THE CORROSION OF ZINC UNDER THIN LAYER ELECTROLYTE
Xueyuan Zhang;Gan Yu;Enhou Han
中科院金属所金属腐蚀与防护国家重点实验室
Download:  PDF(137KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A three-electrode electrochemical cell to study the corrosion behavior of metal under thin electrolyte was designed.With the increa sing of Cl-,and the anodic reaction was promoted,the transfer resistance and c orrosion potential decreased,the corrosion rate increased.With the decreasing of electrolyte layer thickness,the transfer resistance of zinc in 0.01 mol/L NaCl solution increased,and the corrosion rate decreased.In the bulk solution with di fferent salt,the order of effect on the corrosion of zinc from the severest to t he lightest is Na2SO4,NaNO3 ,Na2CO3 and NaCl,while under thin electrol yte,the order is NaCl,Na2SO4,NaNO3 and Na2CO3.
Key words:  Zinc      thin layer electrolyte      salt      
Received:  18 July 2001     
ZTFLH:  TG172  
Corresponding Authors:  Xueyuan Zhang   

Cite this article: 

Xueyuan Zhang; Gan Yu; Enhou Han. THE EFFECT OF SALTS ON THE CORROSION OF ZINC UNDER THIN LAYER ELECTROLYTE. J Chin Soc Corr Pro, 2003, 23(1): 30-33 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2003/V23/I1/30

[1]CoxA ,LyonSB .Anelectrochemicalstudyoftheatmosphericcor rosionofmildsteelⅠexperimental[J].Corros.Sci.,1994,36(7):1167-1176.
[2]FiaudC ,KeddamM ,KadriA ,TakenoutiH .Electrochemicalimpedanceinathinsurfaceelectrolytelayerinfluenceofthepoten tialprobelocation[J].ElectrochimicaActa,1987,32(6):445-448.
[3]ZhangXueyuan,KeKe,DuYuanlong.Researchontheelectrochem icalcorrosioncellformetalunderdifferentthinlayerelectrolytes[J].J.ChineseSocietyforCorrosionandProtection,2001,21(2):117(张学元,柯克,杜元龙.金属在薄层液膜下电化学腐蚀电池的设计研究[J].中国腐蚀与防护学报,2001,21(2):117)
[4]KeddamM ,HugotLe,GoffA ,TakenoutiH ,etal.Theinfluenceofathinelectrolytelayeronthecorrosionprocessofzincinchloridecontainingsolutions[J].Corros.Sci.,1992,33(8):1243
[5]XiaogeGregoryZhang.CorrosionandElectrochemistryofZinc[M ].NewYork:PlenumPress,1996,157
[6]WangFengping.EffectofincreasingCO2 inatmosphereonatmo spherecorrosionofmetals[D].Shenyang:InstituteofCorrosionandProtectionofMetals,ChineseAcademyofSciences,2000.(王凤平.大气CO2浓度升高对金属大气腐蚀的影响[D].沈阳:中国科学院金属腐蚀与防护研究所,2000)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[5] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[6] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[7] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[8] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[9] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[10] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[11] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[12] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[13] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[14] Ming ZHU,Guyue ZHOU,Huihui ZHANG. Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
[15] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
No Suggested Reading articles found!