Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (1): 51-58    DOI: 10.11902/1005.4537.2018.001
Current Issue | Archive | Adv Search |
Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF
Hui LIU1,2,Wei QIU1(),Bin LENG2(),Guojun YU2
1. School of Energy and Power Engineering, Changsha University of Scinece & Technology, Changsha 410114, China
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Download:  HTML  PDF(9718KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 304 and 316H stainless steels in molten LiF-NaF-KF(FLiNaK) salt at 700 ℃ was studied by static immersion test, followed by SEM/EDS and EPMA analyses. Results show that the corrosion characteristics of the two stainless steels in molten FLiNaK salt are mainly selective depletion of Cr from the surface and grain boundaries underneath the surface. The corrosion depth and weight loss of 316H stainless steel are lower than those of 304 stainless steel, which may be ascribed to the Mo addition in 316H steel. After corrosion, the two steels show surface corrosion layers enriched in Ni and Fe, as well as nano-sized precipitates in the steel matrix near the surface. EDS analyses suggest these precipitates to be Cr and Al nitrides or carbonitrides. The formation of these precipitates significantly increases the hardness of the materials.

Key words:  304 stainless steel      316H stainless steel      molten fluoride salt      intergranular corrosion      nano-sized precipitate     
Received:  02 January 2018     
ZTFLH:  TG172.6  
Fund: Supported by National Natural Science Foundation of China(51301025);Supported by National Natural Science Foundation of China(51141001);Supported by National Natural Science Foundation of China(51501217)
Corresponding Authors:  Wei QIU,Bin LENG     E-mail:  hncsqqwk86@163.com;lengbin@sinap.ac.cn

Cite this article: 

Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 51-58.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.001     OR     https://www.jcscp.org/EN/Y2019/V39/I1/51

SteelCMnSSiPCrNiMoFe
3040.061.130.0020.40<0.00118.587.74---Bal.
316H0.061.080.0040.470.03516.2410.042.07Bal.
Table 1  Chemical compositions of 304 and 316H stainless steels (mass fraction / %)
Fig.1  Schematic illustration of the static corrosion capsule
SteelCrFeNiMo
30424112353951.1
316H16248429014.8
Table 2  Element contents of Cr, Fe and Ni in FLiNaK salt after corrosion (mg/L)
Fig.2  SEM images of the surfaces of 304 (a) and 316H (b) stainless steels after corrosion at 700 ℃ in FLiNaK salt for 400 h
Fig.3  Cross sections (a, e) and EPMA elemental distribution mappings of Cr (b, f), Fe (c, g) and Ni (d, h) of 304 (a~d) and 316H (e~h) stainless steels after corrosion in FLiNaK salt for 400 h
Fig.4  Back scattered electron images (a, b) and the magnified images of areas I (c), II (e) in Fig.4a and III (d), IV (f) in Fig.4b of the cross-sections and EDS line scanning results (g, h) across the grain boundaries in the unaffected zones (along the marked lines) for 304 (a, c, e, g) and 316H (b, d, f, h) stainless steels after corrosion in FLiNaK salt at 700 ℃ for 400 h
PositionNAlCrFeNiMo
304 Unaffected zone (1)00.118.972.48.60
304 Precipitation zone (dark) (2)5.90.218.667.280.1
304 Corrosion zone (gray) (3)00.12.285.212.20.3
316H Unaffected zone (4)0017.569.910.52.1
316H Precipitation zone (dark) (5)3.40.717.765.410.22.6
316H Corrosion zone (gray) (6)001.681.516.20.7
Table 3  EDS analysis results of different areas of 304 and 316H stainless steels after corrosion (the numbers in the brackets correspond to the reference signs of the areas in Fig.4) (mass fraction / %)
[1] Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system [J]. Physics, 2016, 45: 578
[1] 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统 [J]. 物理, 2016, 45: 578
[2] Jiang M H, Xu H J, Dai Z M. Advanced fission energy program-TMSR nuclear energy system [J]. Bull. Chin. Acad. Sci., 2012, 27: 366
[2] 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能——TMSR核能系统 [J]. 中国科学院院刊, 2012, 27: 366
[3] Serp J, Allibert M, Benes O, et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives [J]. Prog. Nucl. Energ., 2014, 77, 308
[4] Williams D F. Assessment of candidate molten salt coolants for the NGNP/NHI Heat Transfer Loop [R]. Oak Ridge: Oak Ridge National Lab, 2006
[5] Zhu Y S, Hou J, Yu G J, et al. Effects of exposing temperature on corrosion performance of weld joint of a Ni-Mo-Cr alloy [J]. J. Fluorine Chem., 2016, 182: 69
[6] Olson L C, Ambrosek J W, Sridharan K, et al. Materials corrosion in molten LiF-NaF-KF salt [J]. J. Fluorine Chem., 2009, 130: 67
[7] Wang Y L, Liu H J, Yu G J, et al. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K) F at 700 ℃ [J]. J. Fluorine Chem., 2015, 178: 14
[8] Charalampos A, Anselmo T C, Alexandre Y K C, et al. Technical description of the “mark 1” pebble-bed fluoride-salt-cooled high-temperature reactor (PB-FHR) power plant [R]. UCBTH-14-002. Berkeley: Department of Nuclear Engineering University of California, 2014
[9] Sellers R S, Cheng W J, Kelleher B C, et al. Corrosion of 316L stainless steel alloy and Hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite [J]. Nucl. Technol., 2014, 188: 192
[10] Zheng G Q. Corrosion behavior of alloys in molten fluoride salts [D]. Wisconsin: The University of Wisconsin-Madison, 2015
[11] Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J].Chin J.. Soc. Corros. Prot., 2015, 35: 543
[11] 丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
[12] Koger J W. Alloy compatibility with LiF-BeF2 salts containing ThF4 and UF4 [R]. ORNL-4286. Oak Ridge: Oak Ridge National Lab, 1972
[13] Kondo M, Nagasaka T, Sagara A, et al. Metallurgical study on corrosion of austenitic steels in molten salt LiF-BeF2 [J]. J. Nucl. Mater., 2009, 386: 685
[14] Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the Advanced high-temperature Reactor (AHTR) [R]. ORNL/TM-2006/12. Oak Ridge: Oak Ridge National Lab, 2006
[15] Schneider M, Kremmer K, L?mmel C, et al. Galvanic corrosion of metal/ceramic coupling [J]. Corros. Sci., 2014, 80: 191
[16] Ozeryanaya I N. Corrosion of metals by molten salts in heat-treatment processes [J]. Met. Sci. Heat Treat., 1985, 27: 184
[17] Zeng C L, Li J, Zhou T. Galvanic corrosion in molten salts: A discussion of the corrosion mechanism of two-phase Ni-20Cr-20/30Cu alloys in eutectic (Li, K)2CO3 at 650 ℃ [J]. Oxid. Met., 2005, 64: 207
[18] Fontana M G, Staehle R W. Chromium depletion and void formation in Fe-Ni-Cr alloys during molten salt corrosion and related processes [A]. In: Koger J W. Advances in Corrosion Science and Technology [M]. New York: Plenum Press, 1974
[19] Ouyang F Y, Chang C H, You B C, et al. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments [J]. J. Nucl. Mater., 2013, 437: 201
[20] Zhang S L, Li M J, Wang X B, et al. Intergranular corrosion of 18-8 austenitic stainless steel [J].Chin J.. Soc. Corros. Prot., 2007, 27: 124
[20] 张述林, 李敏娇, 王晓波等. 18-8奥氏体不锈钢的晶间腐蚀 [J]. 中国腐蚀与防护学报, 2007, 27: 124
[21] Smith A F. The diffusion of chromium in type 316 stainless steel [J]. Met. Sci., 1975, 9: 375
[22] Olson L C, Sridharan K, Anderson M, et al. Intergranular corrosion of high temperature alloys in molten fluoride salts [J]. Mater. High Temp., 2010, 27: 145
[23] Bruemmer S M. Grain boundary chemistry and intergranular failure of austenitic stainless steels [J]. Mater. Sci.Forum, 1989, 46: 309
[24] Zheng G Q, He L F, Carpenter D, et al. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li2BeF4 (FLiBe) salt [J]. J. Nucl. Mater., 2016, 482: 147
[1] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[4] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[5] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[6] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[7] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[8] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[9] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[10] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[11] Yingjun AI,Nan DU,Qing ZHAO,Shixin HUANG,Liqiang WANG,Qingjie WEN. Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[12] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[13] Yurong FANG,Chaoyang FU. Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[14] YE Chao, DU Nan, TIAN Wenming, ZHAO Qing, ZHU Li. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[15] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
No Suggested Reading articles found!