Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (5): 451-459    DOI: 10.11902/1005.4537.2017.159
Current Issue | Archive | Adv Search |
Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment
Xin ZHANG1,Nianwei DAI2,Yan YANG1,Junxi ZHANG1()
1 School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2 Department of Materials Science, Fudan University, Shanghai 200433, China
Download:  HTML  PDF(1445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of a direct current (DC) electric field on the corrosion of Zn exposed in a simulated industrial environment for a period of 30 d was studied by using weight loss and electrochemical tests, XRD and SEM techniques. The results show that the corrosion rate of Zn increased with the increase of DC electric field intensity. With an applied DC electric field, the cathodic reduction process and the anodic dissolution reaction process of Zn in the simulated industrial environment can be accelerated. The influence of the DC electric field on the corrosion behavior of Zn can be attributed to that the distribution of ions in the solution may be altered by the electric field, thus, it can change the reaction site of the formation and also the structure of the corrosion product. Then, the corrosion rate of Zn in the simulated industrial environment can be increased.

Key words:  zinc      direct current (DC) electric field      atmospheric corrosion      corrosion product      ion migration     
Received:  27 March 2017     
Fund: Supported by National Natural Science Foundation of China (51271110)

Cite this article: 

Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 451-459.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.159     OR     https://www.jcscp.org/EN/Y2017/V37/I5/451

Fig.1  Schematic diagrams of substrate specimen
Fig.2  Schematic diagrams of experimental device in simulated industrial environment with the DC electric field
Fig.3  Mass loss of zinc as a function of DC electric field intensities in simulated industrial environment under various exposure time
Fig.4  Polarisation curves of zinc under various DC electric field intensities after exposured for 7 d (a), 12 d (b), 20 d (c) and 30 d (d)
Time / d E / kVm-1 Ba / Vdec-1 bc / Vdec-1 Icorr / μAcm-2 Ecorr (vs SCE) / V
7 0 247.33 245.10 35.70 -1.037
100 190.33 72.93 35.93 -1.058
200 69.34 93.60 36.04 -1.052
400 76.69 121.19 36.20 -1.036
12 0 86.60 216.81 37.45 -1.035
100 124.36 40.22 39.23 -1.053
200 130.55 53.18 42.18 -1.051
400 132.23 65.17 44.04 -1.049
20 0 78.55 129.63 38.98 -1.038
100 82.71 71.94 41.98 -1.043
200 85.83 74.33 44.05 -1.035
400 72.73 66.99 48.62 -1.040
30 0 62.21 82.06 41.74 -1.056
100 85.83 128.45 45.26 -1.038
200 71.97 66.66 48.89 -1.044
400 80.42 70.94 52.36 -1.033
Table 1  Parameter sare fitted from polarization curves of zinc in various exposure times under different DC electric field intensities
Fig.5  XRD patterns of corrosion products of zinc after exposed for 7 d under different DC electric field intensities
Fig.6  XRD patterns of corrosion products of zinc after exposed for 12 d under different DC electric field intensities
Fig.7  XRD patterns of corrosion products of zinc after exposed for 20 d under different DC electric field intensities
Fig.8  XRD patterns of corrosion products of zinc after exposed for 30 d under different DC electric field intensities
Fig.9  SEM images of products formed on zinc after exposed for 7 d under different DC electric field intensities; (a) 0 kV/m, (b) 100 kV/m, (c) 200 kV/m, (d) 400 kV/m
Fig.10  SEM images of products formed on zinc after exposed for 20 d under different DC electric field intensities; (a) 0 kV/m, (b) 100 kV/m, (c) 200 kV/m, (d) 400 kV/m
Fig.11  SEM images of products formed on zinc after exposed for 30 d under different DC electric field intensities; (a) 0 kV/m, (b) 100 kV/m, (c) 200 kV/m, (d) 400 kV/m
Fig.12  Schematic illustration of the distribution of ions and corrosion products in simulated industrial environment without (a) and with (b) DC electric field
[1] de la Fuente D, Casta?o D J G, Morcillo M. Long-term atmospheric corrosion of zinc[J]. Corros. Sci., 2007, 49: 1420
[2] Li M C, Jiang L L, Zhang W Q, et al.Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5%NaCl solutions[J]. J. Solid State Electrochem., 2007, 11: 1319
[3] Marques A G, Taryba M G, Pan?o A S, et al.Application of scanning electrode techniques for the evaluation of iron-zinc corrosion in nearly neutral chloride solutions[J]. Corros. Sci., 2016, 104: 123
[4] Souto R M, Fernández-Mérida L, González S, et al.Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels[J]. Corros. Sci., 2006, 48: 1182
[5] Ramanauskas R, Muleshkova L, Maldonado L, et al.Characterization of the corrosion behaviour of Zn and Zn alloy electrodeposits: atmospheric and accelerated tests[J]. Corros. Sci., 1998, 40: 401
[6] Svensson J E, Johansson L G.A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc[J]. J. Electrochem. Soc., 1993, 140: 2210
[7] Graedel T E.Corrosion mechanisms for zinc exposed to the atmosphere[J]. J. Electrochem. Soc., 1989, 136: 193C
[8] Diler E, Lescop B, Rioual S, et al.Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS[J]. Corros. Sci., 2014, 79: 83
[9] Anderson E A.The atmospheric corrosion of rolled zinc [R]. STP 175. Philadelphia, PA: ASTM, 1956: 126
[10] Quintana P, Veleva L, Cauich W, et al.Study of the composition and morphology of initial stages of corrosion products formed on Zn plates exposed to the atmosphere of southeast Mexico[J]. Appl. Surf. Sci., 1996, 99: 325
[11] Qu Q, Yan C W, Wan Y, et al.Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J]. Corros. Sci., 2002, 44: 2789
[12] Wang P, Zhang D, Qiu R, et al.Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corros. Sci., 2013, 69: 23
[13] Azmat N S, Ralston K D, Muddle B C, et al.Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53: 1604
[14] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48: 2882
[15] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 2. Pure copper[J]. Corros. Sci., 2007, 49: 2329
[16] Chen Z Y, Persson D, Leygraf C.Initial NaCl-particle induced atmospheric corrosion of zinc-Effect of CO2 and SO2[J]. Corros. Sci., 2008, 50: 111
[17] Casta?o J G, de la Fuente D, Morcillo M. A laboratory study of the effect of NO2 on the atmospheric corrosion of zinc[J]. Atmos. Environ., 2007, 41: 8681
[18] Chen Y Y, Chung S C, Shih H C.Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J]. Corros. Sci., 2006, 48: 3547
[19] Lalvani S B, Zhang G.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part II[J]. Corros. Sci., 1995, 37: 1583
[20] Wendt J L, Chin D T.The a.c. corrosion of stainless steel-II. The breakdown of passivity of ss304 in neutral aqueous solutions[J]. Corros. Sci., 1985, 25: 889
[21] Bertolini L, Carsana M, Pedeferri P.Corrosion behaviour of steel in concrete in the presence of stray current[J]. Corros. Sci., 2007, 49: 1056
[22] Huang H L, Guo X P, Zhang G A, et al.The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer[J]. Corros. Sci., 2011, 53: 1700
[23] Huang H L, Guo X P, Zhang G A, et al.Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corros. Sci., 2011, 53: 3446
[24] Dai N W, Zhang J X, Chen Q M, et al.Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment[J]. Corros. Sci., 2015, 99: 295
[25] Yuan X J, Zhang J X, Chen Q M, et al.Electrochemical process of Zn electrode covered with thin electrolyte layer under external electric field[J]. Corros. Sci. Prot. Technol., 2014, 26: 197
[25] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属Zn在薄液膜下的电极过程研究[J]. 腐蚀科学与防护技术, 2014, 26: 197)
[26] Xu Y J, Zhang J X, Chen Q M, et al.Corrosion behavior of Zinc covered with thin electrolyte layers under external electric field[J]. J. Electrochem., 2013, 19: 430
[26] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属锌在薄液膜下的腐蚀电化学研究[J]. 电化学, 2013, 19: 430)
[27] Tanaka H, Takeuchi Y, Ishikawa T, et al.Influence of anions on the formation and structure of artificial zinc rusts[J]. Corros. Sci., 2011, 53: 2502
[28] Ishikawa T, Murai M, Kandori K, et al.Structure and composition of artificially synthesized rusts of Zn-Fe and Zn-Ti alloys[J]. Corros. Sci., 2006, 48: 3172
[29] Mouanga M, Ber?ot P.Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part II: electrochemical analyses[J]. Corros. Sci., 2010, 52: 3993
[30] Muster T H, Neufeld A K, Cole I S.The protective nature of passivation films on zinc: Wetting and surface energy[J]. Corros. Sci., 2004, 46: 2337
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[6] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[7] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[8] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[9] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[10] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[11] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[12] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[15] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
No Suggested Reading articles found!