Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 193-199    DOI: 10.11902/1005.4537.2021.070
Current Issue | Archive | Adv Search |
Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor
WU Jiajie, WANG Yanli()
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Download:  HTML  PDF(1122KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As one of the Gen-IV (Generation Four Initiative) alternative reactors, molten salt reactor (MSR) has become a popular research topic again in recent years. Molten fluorides act as the nuclear fuel carrier and coolant in MSR. However, its highly corrosive to structural materials is a great barrier of the MSR development. The active dissolution of alloying elements is the main result of hot corrosion. Trace impurities, the formation of galvanic couples between different materials and temperature gradient in the molten salt system are the main driving forces of hot corrosion. The research status of hot corrosion and surface protection for structural materials in molten fluoride salts by domestic and foreign researchers are reviewed in the present article.

Key words:  molten salt reactor      fluorides      hot corrosion      coating     
Received:  06 April 2021     
ZTFLH:  TG178  
Fund: Specific Research Project of Guangxi for Research Bases and Talents(GuiKe AD20159074);National Natural Science Foundation of China(51801035);Innovation Project of Guangxi Graduate Education(YCSW2021056)
Corresponding Authors:  WANG Yanli     E-mail:  wyl187358@gxu.edu.cn
About author:  WANG Yanli, E-mail: wyl187358@gxu.edu.cn.

Cite this article: 

WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 193-199.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.070     OR     https://www.jcscp.org/EN/Y2022/V42/I2/193

Fig.1  Illustration of "mass transfer process" during temperature gradient induced corrosion[24]
Fig.2  Distribution of active elements of materials without and with protective coatings after long-term immersion in molten fluorides[37]
1 Rosenthal M W, Kasten P R, Briggs R B. Molten-salt reactors-history, status, and potential [J]. Nucl. Appl. Technol., 1970, 8: 107
2 Qiu S Z, Zhang D L, Su G H, et al. Research on inherent safety and relative key issues of a molten salt reactor [J]. Atomic Energy Sci. Techol., 2009, 43(suppl.1): 64
秋穗正, 张大林, 苏光辉等. 新概念熔盐堆的固有安全性及相关关键问题研究 [J]. 原子能科学技术, 2009, 43(): 64
3 Jiang M H, Xu H J, Dai Z M. Advanced fission energy program-TMSR nuclear energy system [J]. Bull. Chin. Acad. Sci., 2012, 27: 366
江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能—TMSR核能系统 [J]. 中国科学院院刊, 2012, 27: 366
4 Xie W C. China's molten salt reactor technology is at the international advanced level [N]. China Electric Power News, 2015-10-17
谢文川. 我国熔盐堆技术处于国际先进水平 [N]. 中国电力报, 2015-10-17
5 You B J. Study on corrosion behavior of nickel-based alloys in FLiNaK molten salt [D]. Beijing: Tsinghua University, 2010
游柏坚. 镍基合金于FLiNaK融盐之腐蚀行为研究 [D]. 北京: 清华大学, 2010
6 MacPherson H G. The molten salt reactor adventure [J]. Nucl. Sci. Eng., 1985, 90: 374
7 Holcomb D E, Cetiner S M, Flanagan G F, et al. An analysis of testing requirements for fluoride salt cooled high temperature reactor components [R]. Oak Ridge, Tennessee: ORNL, 2009
8 Cottrell W B, Crabtree T E, Davis A L, et al. Disassembly and postoperative examination of the aircraft reactor experiment [R]. Oak Ridge, Tennessee: ORNL, 1958
9 Olson L C, Ambrosek J W, Sridharan K, et al. Materials corrosion in molten LiF-NaF-KF salt [J]. J. Fluorine Chem., 2009, 130: 67
10 Patel N S, Pavlík V, Kubíková B, et al. Corrosion behaviour of Ni-based superalloys in molten FLiNaK salts [J]. Corros. Eng., Sci. Technol., 2019, 54: 46
11 Ye X X, Ai H, Guo Z, et al. The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS [J]. Corros. Sci., 2016, 106: 249
12 Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
13 Kok D J. The effect of FLiNaK molten salt corrosion on the hardness of hastelloy N [J]. ELAIA, 2019, 2: 9
14 Ouyang F Y, Chang C H, You B C, et al. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments [J]. J. Nucl. Mater., 2013, 437: 201
15 Wang Y L, Wang Q, Liu H J, et al. Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li,Na,K) F [J]. Corros. Sci., 2016, 103: 268
16 Doniger W H, Falconer C, Elbakhshwan M, et al. Investigation of impurity driven corrosion behavior in molten 2LiF-BeF2 salt [J]. Corros. Sci., 2020, 174: 108823
17 Qin Y Q, Zuo Y, Shen M. Corrosion inhibition of 316L stainless steel in FLiNaK-CrF3/CrF2 redox buffering molten salt system [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 182
秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 182
18 Liu Q, Leng B, Qiu J, et al. Effect of graphite particles in molten LiF-NaF-KF eutectic salt on corrosion behaviour of GH3535 alloy [J]. Corros. Sci., 2020, 168: 108581
19 Liu Q, Sun H, Yin H Q, et al. Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles [J]. Corros. Sci., 2019, 160: 108174
20 Xu Y X, Wang Y L, Zeng C L. Electrochemical studies of the corrosion of pure Fe, Ni and Cr in molten (Li, Na, K) F [J]. High Temp. Mater. Proc., 2014, 33: 269
21 Sun H, Ding X B, Ai H, et al. Interaction mechanisms of a Hastelloy N-316L stainless steel couple in molten LiF-NaF-KF salt [J]. Corros. Sci., 2020, 164: 108317
22 Zuo Y, Qin Y Q, Shen M, et al. Effect of Cr2+/Cr3+ on galvanic corrosion inhibition of dissimilar metallic materials in 46.5%LiF-11.5%NaF-42.0%KF molten salts system [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 341
左勇, 秦越强, 申淼等. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 341
23 Qiu J, Wu A J, Li Y H, et al. Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt [J]. Corros. Sci., 2020, 170: 108677
24 Koger J W. Effect of FeF2 addition on mass transfer in a Hastelloy N-LiF-BeF2-UF4 thermal convection loop system [R]. Oak Ridge, Tennessee: ORNL, 1972
25 Wang Y L, Zeng C L, Li W H. The influence of temperature gradient on the corrosion of materials in molten fluorides [J]. Corros. Sci., 2018, 136: 180
26 Liu Y H, Yang C, Wang X J, et al. Coating technique on structural materials of molten salt reactor [J]. Chin. J. Rare Met., 2016, 40: 908
刘艳红, 杨超, 王晓婧等. 熔盐堆结构材料的涂层技术研究 [J]. 稀有金属, 2016, 40: 908
27 Sawant S S, Gajbhiye B D, Tyagi S, et al. High temperature corrosion studies in molten salt using salt purification and alloy coating [J]. Indian Chem. Eng., 2017, 59: 242
28 Cheng W J, Sellers R S, Anderson M H, et al. Zirconium effect on the corrosion behavior of 316L stainless steel alloy and hastelloy-N superalloy in molten fluoride salt [J]. Nucl. Technol., 2013, 183: 248
29 Zhu H M, Li B C, Chen M H, et al. Improvement of corrosion resistance of hastelloy-N alloy in LiF-NaF-KF molten salt by laser cladding pure metallic coatings [J]. Coatings, 2018, 8: 322
30 Morell-Pacheco A, Kim H, Wang T Y, et al. Ni coating on 316L stainless steel using cage plasma treatment: Feasibility and swelling studies [J]. J. Nucl. Mater., 2020, 540: 152385
31 Zhang Y C, Liu Y H, Zhou Z J, et al. Research on protective coating on inner surface of alloy tube [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 230: 012018
32 Olson L, Sridharan K, Anderson M, et al. Nickel-plating for active metal dissolution resistance in molten fluoride salts [J]. J. Nucl. Mater., 2011, 411: 51
33 Zheng J Y, Yu X H, Liu M, et al. SR X-ray analysis of Ni-based alloys corroded in molten fluoride salt [J]. Nucl. Tech., 2011, 34: 336
郑俊义, 余笑寒, 刘敏等. 镍基合金受熔融氟化盐腐蚀的同步辐射XRF分析 [J]. 核技术, 2011, 34: 336
34 Zhu H L, Holmes R, Hanley T, et al. High-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt [J]. Corros. Sci., 2015, 91: 1
35 Briggs R B. Molten-salt reactor program semiannual progress report for period ending January 31, 1964 [R]. Oak Ridge, Tennessee: ORNL, 1964
36 Jiang D L. Recent research progress of high performance ceramics [J]. Mater. China, 2009, 28(12): 26
江东亮. 高性能陶瓷的研究进展 [J]. 中国材料进展, 2009, 28(12): 26
37 Liu T, Dong J S, Xie G, et al. Corrosion behavior of GH3535 superalloy in FLiNaK molten salt [J]. Acta Metall. Sin., 2015, 51: 1059
刘涛, 董加胜, 谢光等. GH3535合金在FLiNaK熔盐中的腐蚀行为 [J]. 金属学报, 2015, 51: 1059
38 Sabioni A C S, Huntz A M, Silva F, et al. Diffusion of iron in Cr2O3: polycrystals and thin films [J]. Mater. Sci. Eng., 2005, 392A: 254
39 Xu Y X, Luo X T, Li C X, et al. Formation of Cr2O3 diffusion barrier between Cr-contained stainless steel and cold-sprayed Ni coatings at high temperature [J]. J. Therm. Spray Technol., 2016, 25: 526
40 Xu Y X, Chirol M, Li C J, et al. Formation of Al2O3 diffusion barrier in cold-sprayed NiCoCrAlY/Ni multi-layered coatings on 304SS substrate [J]. Surf. Coat. Technol., 2016, 307: 603
41 Cai Y, Li J P, Lu F, et al. Structure and antioxidation behavior of TiC diffusion barrier prepared by arc ion plating [J]. Vacuum, 2010, 47(5): 5
蔡妍, 李建平, 陆峰等. 电弧离子镀TiC扩散障结构及抗高温氧化性能研究 [J]. 真空, 2010, 47(5): 5
42 Lima C R C, Cinca N, Guilemany J M. Study of the high temperature oxidation performance of thermal barrier coatings with HVOF sprayed bond coat and incorporating a PVD ceramic interlayer [J]. Ceram. Int., 2012, 38: 6423
43 Wang C X, Chen W, Chen M H, et al. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃ [J]. J. Mater. Sci. Technol., 2020, 45: 125
44 Watanabe T, Kondo M, Nagasaka T, et al. Corrosion characteristic of AlN, Y2O3, Er2O3 and Al2O3 in Flinak for molten salt blanket system [J]. J. Plasma Fusion Res. Ser., 2010, 9: 342
45 Du H L, Datta P K, Griffin D, et al. Oxidation and sulfidation behavior of AlTiN-coated Ti-46.7Al-1.9W-0.5Si intermetallic with CrN and NbN diffusion barriers at 850°C [J]. Oxid. Met., 2003, 60: 29
46 Brupbacher M C, Zhang D J, Buchta W M, et al. Synthesis and characterization of binder-free Cr3C2 coatings on nickel-based alloys for molten fluoride salt corrosion resistance [J]. J. Nucl. Mater., 2015, 461: 215
47 Su X Z, Zhao S F, Hou J, et al. Formation of chromium carbide coatings on HT250 steel by thermal diffusion processes in fluoride molten salt bath [J]. Vacuum, 2018, 155: 219
48 Wang Y, Tang Z F, Fu Y, et al. Corrosion behavior of ZrC-SiC composite ceramics in LiF-NaF-KF molten salt at high temperatures [J]. Ceram. Int., 2015, 41: 12996
49 He X J, Song J L, Tan J, et al. SiC coating: an alternative for the protection of nuclear graphite from liquid fluoride salt [J]. J. Nucl. Mater., 2014, 448: 1
50 Zhu H M, Li B C, Chen M H, et al. AlN coatings on Hastelloy-N alloy offering superior corrosion resistance in LiF-KF-NaF molten salt [J]. J. Fluorine Chem., 2018, 213: 80
51 Wang C X. Study on diffusion barriers against interdiffusion of Ni/GH3535 system in molten fluoride envionment [D]. Hefei: University of Science and Technology of China, 2020
王成旭. 熔融氟盐环境中Ni/GH3535体系的扩散障设计研究 [D]. 合肥: 中国科学技术大学, 2020
52 Wang C X, Chen W, Chen M H, et al. Corrosion behavior and elements interdiffusion between a Ni coating and GH3535 alloy with and without a CrN barrier in molten fluoride salts [J]. J. Nucl. Mater., 2019, 514: 348
53 Li X L. The effects of yttrium on microstructure and high-temperature corrosion resistance of GH3535 superalloy [D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015
李晓丽. 稀土Y对GH3535高温合金微观结构和抗高温腐蚀性能的影响 [D]. 上海: 中国科学院研究生院 (上海应用物理研究所), 2015
54 Li X L, He S M, Zhou X T, et al. High-temperature corrosion behavior of Ni-16Mo-7Cr-4Fe superalloy containing yttrium in molten LiF-NaF-KF salt [J]. J. Nucl. Mater., 2015, 464: 342
55 Wang Q, Zhang L, Zhai L L, et al. In-situ synthesis of silicide coatings on molybdenum substrates by electrodeposition in chloride-fluoride molten salts [J]. Int. J. Refract. Met. Hard Mater., 2019, 82: 340
[1] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[2] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[3] LI Jianyong, DAI Dianyu, QIAN Chen, DIAO Shulei, LIU Jinshan, LU Tongxin, SUN Yong, XIAO Fengjuan. Corrosion Behavior of PANI Nanofiber/Modified GO/Waterborne Epoxy Composite Coating on Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[4] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[5] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[6] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[7] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[8] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[9] MA Shide, LIU Xin, WANG Zaidong, REN Yadong, TAI Yu, HAN Wen, DUAN Jizhou. Characterization of Seawater Corrosion Interface of Zinc Coated Steel Plate in Zhong-gang Harbor[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[10] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[11] AN Liang, GAO Changqi, JIA Jiangang, MA Qin. Review on Metal Silicide Anti-oxidation Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
[12] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[13] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[14] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[15] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
No Suggested Reading articles found!