Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 781-786    DOI: 10.11902/1005.4537.2023.141
Current Issue | Archive | Adv Search |
Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment
LIU Ming1(), WANG Jie2, ZHU Chunhui3, ZHANG Yanxiao4
1.State Key Laboratory of Strength of Metal Materials, School of Materials Science and Engineering, Xi 'an Jiaotong University, Xi 'an 710049, China
2.Shaanxi Zhou Doctor Dental Medical Co., Ltd., Xi 'an 710086, China
3.Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi 'an 710004, China
4.Department of Orthodontic, Wuxi Hospital of Stomatology, Wuxi 214000, China
Download:  HTML  PDF(2458KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical corrosion behavior of 3D-printed NiTi shape memory alloy in various types of artificial saliva was studied by means of open circuit potential measurement, polarization curve, electrochemical impedance spectroscopy and Mott-Schottky. The results show that with the increasing time of immersion in an artificial saliva, the open circuit potential of 3D-NiTi alloy shifted positively, while the thermodynamic stability of the alloy is improved. The alloy exhibited typical passivation characteristics, and the corrosion resistant and stable passive film might form. After Coke was added to the artificial saliva, the thermodynamic stability of the alloy decreased, the polarization curve moved to the lower left, the free-corrosion potential shifted negatively, and the corresponding corrosion current density increased. After adding 1% NaF, the thermodynamic stability of the alloy decreases sharply, showing an active corrosion state. The number of defects of the passive film increases 3.7 times, and F- can greatly damage the integrity of the passive film.

Key words:  3D-NiTi      artificial saliva      coke      F-      electrochemical impedance spectroscopy     
Received:  06 May 2023      32134.14.1005.4537.2023.141
ZTFLH:  TG174  
Fund: Natural Science Foundation of Shaanxi Province(2019JQ-609)
Corresponding Authors:  LIU Ming, E-mail: liuming0313@xjtu.edu.cn   

Cite this article: 

LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 781-786.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.141     OR     https://www.jcscp.org/EN/Y2023/V43/I4/781

Fig.1  OCP of 3D-NiTi alloy immersed in various artificial saliva for 168 h
Fig.2  Polarization curves of 3D-NiTi alloy immersed in various artificial saliva for 30 min
Corrosion environmentEcorr / mVSCEIcorr / μA·cm-2ba / mV·dec-1bc / mV·dec-1Epit / mVSCE
AS-170.09274-1621280
AS+Coke-3260.97253-145310
AS+1% NaF-4854.98217-133-
Table 1  Fitting result of polarization curves of 3D-NiTi alloy immersed in various artificial saliva for 30 min
Fig.3  Nyquist (a1-c1) and Bode (a2-c2) diagrams of 3D-NiTi alloy immersed for different time in the artificial saliva of AS (a), AS+Coke (b), AS+1% NaF (c)
Fig.4  Changes of ǀZǀ0.01 Hz value of 3D-NiTi alloy during immersion in various artificial saliva
Fig.5  Equivalent circuit diagram of EIS of 3D-NiTi alloy during immersion in various artificial saliva
Corrosion environmentt / hRs / Ω·cm2QfRf / kΩ·cm2QdlRct / kΩ·cm2

Y0

Ω-1·cm-2·s n

n

Y0

Ω-1·cm-2·s n

n
AS0.550.36.1×10-51.0034.24.3×10-50.92573
2449.26.0×10-51.0065.34.4×10-50.88748
16844.35.7×10-50.9782.33.0×10-50.90894
AS+Coke0.533.314.5×10-50.841.64.4×10-50.91270
2417.512.6×10-50.981.34.2×10-50.82300
16816.59.4×10-50.610.62.2×10-50.92279
AS+1% NaF0.510.747.3×10-50.600.0717.8×10-50.900.2
247.234.4×10-50.740.0812.1×10-51.003.5
1686.520.4×10-50.790.0911.4×10-50.966.2
Table 2  Fitting result of EIS curves of 3D-NiTi alloy immersed in various artificial saliva for different time
Fig.6  Mott-Schottky curves of 3D-NiTi alloy immersed in various artificial saliva for 48 h
1 Sharma N, Jangra K K, Raj T. Fabrication of NiTi alloy: a review [J]. Proc. Inst. Mech. Eng., 2018, 232L: 250
2 Sun Y H, Zhao Y, Zhao Y Y, et al. Improving exposure of anodically ordered Ni-Ti-O and corrosion resistance and biological properties of NiTi alloys by substrate electropolishing [J]. Rare Met., 2021, 40: 3575
doi: 10.1007/s12598-021-01721-4
3 Saberi E, Farhad-Mollashahi N, Bijari S, et al. Comparative evaluation of root canal transportation by three NiTi single-file systems in curved canals: a cone beam computed tomography study [J]. Int. J. Dent., 2018, 2018: 4151692
4 Liu M, Li J, Zhang Y X, et al. Recent advances in corrosion research of biomedical NiTi shape memory alloy [J]. Rare Met. Mater. Eng., 2021, 50: 4165
刘 明, 李 军, 张延晓 等. 生物医用NiTi形状记忆合金腐蚀研究进展 [J]. 稀有金属材料与工程, 2021, 50: 4165
5 Sharma N, Singh G, Hegab H, et al. Tribo-corrosion characterization of NiTiCu alloy for bio-implant applications [J]. Mater. Res. Express, 2019, 6: 096526
6 Liu M, Zhu J N, Popovich V A, et al. Passive film formation and corrosion resistance of laser-powder bed fusion fabricated NiTi shape memory alloys [J]. J. Mater. Res. Technol., 2023, 23: 2991
doi: 10.1016/j.jmrt.2023.01.204
7 Shanaghi A, Chu P K. Enhancement of mechanical properties and corrosion resistance of NiTi alloy by carbon plasma immersion ion implantation [J]. Surf. Coat. Technol., 2019, 365: 52
doi: 10.1016/j.surfcoat.2018.04.027
8 Wang J, Wang T R, Dong S J, et al. The effect of Cu-doping on the corrosion behavior of NiTi alloy arch wires under simulated clinical conditions [J]. Mater. Res. Express, 2021, 8: 016537
9 Močnik P, Kosec T, Kovač J, et al. The effect of pH, fluoride and tribocorrosion on the surface properties of dental archwires [J]. Mater. Sci. Eng., 2017, 78C: 682
10 Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review [J]. Prog. Mater. Sci., 2016, 83: 630
doi: 10.1016/j.pmatsci.2016.08.001
11 Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders [J]. J. Mater. Process. Technol., 2019, 271: 152
doi: 10.1016/j.jmatprotec.2019.03.025
12 Chen X Z, Liu K, Guo W, et al. The fabrication of NiTi shape memory alloy by selective laser melting: a review [J]. Rapid Prototyping J., 2019, 25: 1421
doi: 10.1108/RPJ-11-2018-0292
13 Khoo Z X, Liu Y, An J, et al. A review of selective laser melted NiTi shape memory alloy [J]. Materials, 2018, 11: 519
doi: 10.3390/ma11040519
14 Marattukalam J J, Singh A K, Datta S, et al. Microstructure and corrosion behavior of laser processed NiTi alloy [J]. Mater. Sci. Eng., 2015, 57C: 309
15 Liu M, Cheng X Q, Li X G, et al. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution [J]. Appl. Surf. Sci., 2016, 389: 1182
doi: 10.1016/j.apsusc.2016.08.074
16 Li H, Liu YH, Zhao LH, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
17 Yang X J, Du C W, Wan H X, et al. Influence of sulfides on the passivation behavior of titanium alloy TA2 in simulated seawater environments [J]. Appl. Surf. Sci., 2018, 458: 198
doi: 10.1016/j.apsusc.2018.07.068
18 Freitag M, Łosiewicz B, Goryczka T, et al. Application of EIS to study the corrosion resistance of passivated NiTi shape memory alloy in simulated body fluid [J]. Solid State Phenom., 2012, 183: 57
doi: 10.4028/www.scientific.net/SSP.183
19 Wang R, Luo S J, Liu M, et al. Electrochemical corrosion performance of Cr and Al alloy steels using a J55 carbon steel as base alloy [J]. Corros. Sci., 2014, 85: 270
doi: 10.1016/j.corsci.2014.04.023
20 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
21 Liu M. Cheng X Q, Li X G,et al. Corrosion behavior of low-Cr steel rebars in alkaline solutions with different pH in the presence of chlorides [J]. J. Electroanal. Chem., 2017, 803: 40
doi: 10.1016/j.jelechem.2017.09.016
22 He Z H, Jia J W, Li Y, et al. Passivation behavior of super austenitic stainless steels in simulated flue gas desulfurization condensate[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 408
贺志豪, 贾建文, 李 阳 等. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 408
doi: 10.11902/1005.4537.2022.107
23 Liu M, Li J, Li D P, et al. The passive properties of TA10 in Coca-Cola containing oral environment [J]. Anti-Corros. Methods Mater., 2021, 68: 9
doi: 10.1108/ACMM-05-2020-2312
[1] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[2] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[3] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[4] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[5] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[6] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[7] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[8] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[9] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[13] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[14] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[15] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
No Suggested Reading articles found!