|
|
Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior |
BAI Yihan1, ZHANG Hang1, ZHU Zejie1( ), WANG Jiangying1, CAO Fahe2 |
1.School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China 2.School of Materials Science, Sun Yat-sen University, Guangzhou 510006, China |
|
|
Abstract In the early stage of crevice corrosion, the change of micro-chemical environment inside the crevice are closely related to the occurrence and development of crevice corrosion. This work briefly introduced the basic principles and influencing factors of crevice corrosion. Then the research progress in monitoring the ion concentration variation inside the crevice during recent years were summarized, including the in situ chemical imaging of solid-state ion-selective electrodes and fluorescence molecular in situ monitoring method, sampling analysis method and numerical calculation simulation. In addition, research work of micro-electrochemical sensors combined with SECM in the measurement of the ion concentration variation of micro-areas inside the crevice of stainless steel by our group is also introduced. Future applications of this technique in crevice corrosion are highlighted.
|
Received: 21 October 2022
32134.14.1005.4537.2022.325
|
|
Fund: National Natural Science Foundation of China(52001301);Zhejiang Province Fundamental Research Funds for the Central Universities(2022YW45) |
Corresponding Authors:
ZHU Zejie, E-mail: zejiezhu@cjlu.edu.cn
|
1 |
Yan L, Song G L, Wang Z M, et al. Crevice corrosion of steel rebar in chloride-contaminated concrete [J]. Constr. Build. Mater., 2021, 296: 123587
doi: 10.1016/j.conbuildmat.2021.123587
|
2 |
Huang X, Zhou K, Ye Q Z, et al. Crevice corrosion behaviors of CoCrMo alloy and stainless steel 316L artificial joint materials in physiological saline [J]. Corros. Sci., 2022, 197: 110075
doi: 10.1016/j.corsci.2021.110075
|
3 |
Ilic E, Pardo A, Hauert R, et al. Silicon corrosion in neutral media: The influence of confined geometries and crevice corrosion in simulated physiological solutions [J]. J. Electrochem. Soc., 2019, 166: C125
doi: 10.1149/2.0241906jes
|
4 |
Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5 wt% NaCl solution [J]. Corros. Sci., 2022, 196: 110039
doi: 10.1016/j.corsci.2021.110039
|
5 |
Xu W C, Deng Y, Zhang B B, et al. Crevice corrosion of U75V high-speed rail steel with varying crevice gap size by in-situ monitoring [J]. J. Mater. Res. Technol., 2022, 16: 1856
doi: 10.1016/j.jmrt.2021.12.116
|
6 |
Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
|
7 |
Lu L, Li X G. Corrosion products of reverse crevice corrosion of copper [J]. Int. J. Miner. Metall. Mater., 2011, 18: 320
doi: 10.1007/s12613-011-0441-x
|
8 |
Zhang T S, Wang J L, Li G F, et al. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater [J]. Bioelectrochemistry, 2021, 142: 107933
doi: 10.1016/j.bioelechem.2021.107933
|
9 |
Xu X Y, Liu S M, Liu Y, et al. Corrosion of stainless steel valves in a reverse osmosis system: Analysis of corrosion products and metal loss [J]. Eng. Fail. Anal., 2019, 105: 40
doi: 10.1016/j.engfailanal.2019.06.026
|
10 |
Ning F Q, Tan J B, Zhang Z Y, et al. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66: 163
doi: 10.1016/j.jmst.2020.05.074
|
11 |
Evans U R. The electrochemical character of corrosion [J]. J. Inst. Met., 1923, 30: 239
|
12 |
Fontana M G, Greene N D, McDonald D D. Corrosion engineering [J]. J. Electrochem. Soc., 1979, 126: 232C
|
13 |
Li Y Z, Wang X, Zhang G A. Corrosion behaviour of 13Cr stainless steel under stress and crevice in 3.5 wt. % NaCl solution [J]. Corros. Sci., 2020, 163: 108290
doi: 10.1016/j.corsci.2019.108290
|
14 |
Zhang C W, Fu T L, Chen H Y, et al. Research progress on crevice corrosion, plasma nitriding and surface nanocrystallization of titanium alloys [J]. Surf. Technol., 2019, 48(11): 114
|
|
张乘玮, 付天琳, 陈涵悦 等. 钛合金缝隙腐蚀、离子渗氮与表面纳米化的研究进展[J]. 表面技术, 2019, 48(11): 114
|
15 |
Li Y Z, Xu N, Guo X P, et al. The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2017, 128: 9
doi: 10.1016/j.corsci.2017.08.028
|
16 |
Pickering H W. The significance of the local electrode potential within pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325
doi: 10.1016/0010-938X(89)90039-5
|
17 |
Aoyama T, Sugawara Y, Muto I, et al. In situ monitoring of crevice corrosion morphology of Type 316L stainless steel and repassivation behavior induced by sulfate ions [J]. Corros. Sci., 2017, 127: 131
doi: 10.1016/j.corsci.2017.08.005
|
18 |
Shojaei E, Mirjalili M, Moayed M H. The influence of the crevice induced IR drop on polarization measurement of localized corrosion behavior of 316L stainless steel [J]. Corros. Sci., 2019, 156: 96
doi: 10.1016/j.corsci.2019.04.030
|
19 |
Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065
doi: 10.1016/j.corsci.2011.08.012
|
20 |
Yang Y Z, Jiang Y M, Li J. In situ investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution [J]. Corros. Sci., 2013, 76: 163
doi: 10.1016/j.corsci.2013.06.039
|
21 |
Ning F Q. Crevice corrosion behaviors of nickel-based Alloy 690 and 405 stainless steel in high temperature high pressure water [D]. Hefei: University of Science and Technology of China, 2021
|
|
宁方强. 690镍基合金/405不锈钢高温高压水缝隙腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2021
|
22 |
Torres C, Johnsen R, Iannuzzi M. Crevice corrosion of solution annealed 25Cr duplex stainless steels: Effect of W on critical temperatures [J]. Corros. Sci., 2021, 178: 109053
doi: 10.1016/j.corsci.2020.109053
|
23 |
Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
|
|
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
|
24 |
Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
|
|
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
|
25 |
Ren A, Li C T, Liu F H, et al. Effect of Cl- on corrosion behavior of alloy 690 in high temperature and high pressure water solution [J]. Chin. J. Nonferrous Met., 2012, 22: 1082
|
|
任 爱, 李成涛, 刘飞华 等. Cl-对690合金在高温高压水中腐蚀行为的影响 [J]. 中国有色金属学报, 2012, 22: 1082
|
26 |
Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl– concentration on corrosion behavior of reinforced concrete in soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
|
|
丁清苗, 高宇宁, 侯文亮 等. Cl–浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705
doi: 10.11902/1005.4537.2020.207
|
27 |
Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018
doi: 10.1007/s10853-011-5889-6
|
28 |
Zhao J M, Zuo Y, Xiong J P, et al. Effect of pH value on corrosion behavior of low carbon steel in high salt waste water [J]. Mater. Prot., 2001, 34(7): 8
|
|
赵景茂, 左 禹, 熊金平 等. pH对低碳钢在高含盐污水中的腐蚀影响 [J]. 材料保护, 2001, 34(7): 8
|
29 |
Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
|
30 |
Zhao B J, Fan Y, Li Z Z, et al. Crevice corrosion behavior of 316L stainless steel paired with four different materials [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 332
|
|
赵柏杰, 范 益, 李镇镇 等. 不同类型接触面对316L不锈钢缝隙腐蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 332
doi: 10.11902/1005.4537.2019.198
|
31 |
Kamaraj A, Erning J W. Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids [J]. Corrosion, 2020, 76: 424
doi: 10.5006/3324
|
32 |
Song Y Q, Du C W, Li X G. Electrochemical corrosion behavior of carbon steel with bulk coating holidays [J]. J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 2006, 13: 37
|
33 |
Jakobsen P T, Maahn E. Temperature and potential dependence of crevice corrosion of AISI 316 stainless steel [J]. Corros. Sci., 2001, 43: 1693
doi: 10.1016/S0010-938X(00)00167-0
|
34 |
Wolfe R C, Weil K G, Shaw B A, et al. Measurement of pH gradients in the crevice corrosion of iron using a palladium hydride microelectrode [J]. J. Electrochem. Soc., 2005, 152: B82
doi: 10.1149/1.1851053
|
35 |
Li Y Z, Xu N, Liu G R, et al. Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid [J]. Corros. Sci., 2016, 112: 426
doi: 10.1016/j.corsci.2016.08.002
|
36 |
Picot A, D'Aléo A, Baldeck P L, et al. Long-lived two-photon excited luminescence of water-soluble europium complex: Applications in biological imaging using two-photon scanning microscopy [J]. J. Am. Chem. Soc., 2008, 130: 1532
doi: 10.1021/ja076837c
pmid: 18193870
|
37 |
Lee M H, Park N, Yi C, et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe [J]. J. Am. Chem. Soc., 2014, 136: 14136
doi: 10.1021/ja506301n
pmid: 25158001
|
38 |
Nishimoto M, Ogawa J, Muto I, et al. Simultaneous visualization of pH and Cl- distributions inside the crevice of stainless steel [J]. Corros. Sci., 2016, 106: 298
doi: 10.1016/j.corsci.2016.01.028
|
39 |
Trout T K, Bellama J M, Faltynek R A, et al. Effect of pH on the emission properties of aqueous tris (2, 6-dipicolinato) terbium (III) complexes [J]. Inorg. Chim. Acta, 1989, 155: 13
doi: 10.1016/S0020-1693(00)89273-7
|
40 |
Aoyama T, Sugawara Y, Muto I, et al. NH 4 + generation: The role of NO 3 - in the crevice corrosion repassivation of Type 316L stainless steel [J]. J. Electrochem. Soc., 2019, 166: C250
doi: 10.1149/2.0501910jes
|
41 |
Chen X, Gao F J, Wang Y L, et al. Transient numerical model for crevice corrosion of pipelines under disbonded coating with cathodic protection [J]. Mater. Des., 2016, 89: 196
doi: 10.1016/j.matdes.2015.09.047
|
42 |
Ding J W, Wang H T, Han E H. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60: 186
doi: 10.1016/j.jmst.2020.06.008
|
43 |
Liu F, Liu Q W, Chen J T, et al. Application of peridynamic method to analysis of crevice corrosion [J]. Bull. Sci. Technol., 2020, 36(3): 96
|
|
刘 飞, 刘齐文, 陈景涛 等. 近场动力学方法在缝隙腐蚀问题中的应用 [J]. 科技通报, 2020, 36(3): 96
|
44 |
Cao F H, Xia Y, Liu W J, et al. Basic principles and applications of SECM in metal corrosion [J]. J. Electrochem., 2013, 19: 393
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|