Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 828-836    DOI: 10.11902/1005.4537.2022.325
Current Issue | Archive | Adv Search |
Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior
BAI Yihan1, ZHANG Hang1, ZHU Zejie1(), WANG Jiangying1, CAO Fahe2
1.School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
2.School of Materials Science, Sun Yat-sen University, Guangzhou 510006, China
Download:  HTML  PDF(3891KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the early stage of crevice corrosion, the change of micro-chemical environment inside the crevice are closely related to the occurrence and development of crevice corrosion. This work briefly introduced the basic principles and influencing factors of crevice corrosion. Then the research progress in monitoring the ion concentration variation inside the crevice during recent years were summarized, including the in situ chemical imaging of solid-state ion-selective electrodes and fluorescence molecular in situ monitoring method, sampling analysis method and numerical calculation simulation. In addition, research work of micro-electrochemical sensors combined with SECM in the measurement of the ion concentration variation of micro-areas inside the crevice of stainless steel by our group is also introduced. Future applications of this technique in crevice corrosion are highlighted.

Key words:  crevice corrosion      microelectrochemical sensor      scanning electrochemical microscopy     
Received:  21 October 2022      32134.14.1005.4537.2022.325
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52001301);Zhejiang Province Fundamental Research Funds for the Central Universities(2022YW45)
Corresponding Authors:  ZHU Zejie, E-mail: zejiezhu@cjlu.edu.cn   

Cite this article: 

BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 828-836.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.325     OR     https://www.jcscp.org/EN/Y2023/V43/I4/828

Fig.1  Schematic diagram of the corrosion behavior of crevice corrosion[13]
Fig.2  Schematic diagram of proposed potential distribution on the crevice wall in the stage of propagation of crevice corrosion[20]
Fig.3  Profiles of pH for iron inside the crevice in 0.5 mol/L Na2SO4 (a=0.7 mm) solution[34]
Fig.4  pH versus time inside and outside the seam with and without 600 mg/L HAc in a CO2-saturated solution of 1.65% NaCl[35]
Fig.5  Optical micrograph of the crevice specimen collected (a), fluorescence micrograph of pH over time (b) and Cl- concentration over time (c) [38]
Fig.6  Total current, pH and Cl- concentration of high manganese austenitic stainless steel in 0.01 mol/L NaCl solution (pH=3) evolve with time[38]
Fig.7  Cationic chromatograms of 316L stainless steel in 2 mol/L KNO3 solution[40]
Fig.8  Comparison of the predicted pH profile change over time for 304 stainless steel at various sites: (a) (0,7), (b) (0,4), (c) (0,0.5) using the current model and experiment[41]
Fig.9  Evolution of pH value of solution in crevice with time[43]
Fig.10  Evolution of the pH value of 201 stainless steel in 1 mol/L NaCl solution (pH=4.00, crevice width 500 μm) with time at different positions from the crevice mouth
Fig.11  Evolution of the pH value of 201 stainless steel in 1 mol/L NaCl solution (pH=4.00) at the bottom of the crevice with different crevice widths with time
Fig.12  Evolution of Cl- concentration of 201 stainless steel in 1 mol/L NaCl (pH=4.00) solution at different positions inside the crevice with time
1 Yan L, Song G L, Wang Z M, et al. Crevice corrosion of steel rebar in chloride-contaminated concrete [J]. Constr. Build. Mater., 2021, 296: 123587
doi: 10.1016/j.conbuildmat.2021.123587
2 Huang X, Zhou K, Ye Q Z, et al. Crevice corrosion behaviors of CoCrMo alloy and stainless steel 316L artificial joint materials in physiological saline [J]. Corros. Sci., 2022, 197: 110075
doi: 10.1016/j.corsci.2021.110075
3 Ilic E, Pardo A, Hauert R, et al. Silicon corrosion in neutral media: The influence of confined geometries and crevice corrosion in simulated physiological solutions [J]. J. Electrochem. Soc., 2019, 166: C125
doi: 10.1149/2.0241906jes
4 Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5 wt% NaCl solution [J]. Corros. Sci., 2022, 196: 110039
doi: 10.1016/j.corsci.2021.110039
5 Xu W C, Deng Y, Zhang B B, et al. Crevice corrosion of U75V high-speed rail steel with varying crevice gap size by in-situ monitoring [J]. J. Mater. Res. Technol., 2022, 16: 1856
doi: 10.1016/j.jmrt.2021.12.116
6 Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
7 Lu L, Li X G. Corrosion products of reverse crevice corrosion of copper [J]. Int. J. Miner. Metall. Mater., 2011, 18: 320
doi: 10.1007/s12613-011-0441-x
8 Zhang T S, Wang J L, Li G F, et al. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater [J]. Bioelectrochemistry, 2021, 142: 107933
doi: 10.1016/j.bioelechem.2021.107933
9 Xu X Y, Liu S M, Liu Y, et al. Corrosion of stainless steel valves in a reverse osmosis system: Analysis of corrosion products and metal loss [J]. Eng. Fail. Anal., 2019, 105: 40
doi: 10.1016/j.engfailanal.2019.06.026
10 Ning F Q, Tan J B, Zhang Z Y, et al. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66: 163
doi: 10.1016/j.jmst.2020.05.074
11 Evans U R. The electrochemical character of corrosion [J]. J. Inst. Met., 1923, 30: 239
12 Fontana M G, Greene N D, McDonald D D. Corrosion engineering [J]. J. Electrochem. Soc., 1979, 126: 232C
13 Li Y Z, Wang X, Zhang G A. Corrosion behaviour of 13Cr stainless steel under stress and crevice in 3.5 wt. % NaCl solution [J]. Corros. Sci., 2020, 163: 108290
doi: 10.1016/j.corsci.2019.108290
14 Zhang C W, Fu T L, Chen H Y, et al. Research progress on crevice corrosion, plasma nitriding and surface nanocrystallization of titanium alloys [J]. Surf. Technol., 2019, 48(11): 114
张乘玮, 付天琳, 陈涵悦 等. 钛合金缝隙腐蚀、离子渗氮与表面纳米化的研究进展[J]. 表面技术, 2019, 48(11): 114
15 Li Y Z, Xu N, Guo X P, et al. The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2017, 128: 9
doi: 10.1016/j.corsci.2017.08.028
16 Pickering H W. The significance of the local electrode potential within pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325
doi: 10.1016/0010-938X(89)90039-5
17 Aoyama T, Sugawara Y, Muto I, et al. In situ monitoring of crevice corrosion morphology of Type 316L stainless steel and repassivation behavior induced by sulfate ions [J]. Corros. Sci., 2017, 127: 131
doi: 10.1016/j.corsci.2017.08.005
18 Shojaei E, Mirjalili M, Moayed M H. The influence of the crevice induced IR drop on polarization measurement of localized corrosion behavior of 316L stainless steel [J]. Corros. Sci., 2019, 156: 96
doi: 10.1016/j.corsci.2019.04.030
19 Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065
doi: 10.1016/j.corsci.2011.08.012
20 Yang Y Z, Jiang Y M, Li J. In situ investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution [J]. Corros. Sci., 2013, 76: 163
doi: 10.1016/j.corsci.2013.06.039
21 Ning F Q. Crevice corrosion behaviors of nickel-based Alloy 690 and 405 stainless steel in high temperature high pressure water [D]. Hefei: University of Science and Technology of China, 2021
宁方强. 690镍基合金/405不锈钢高温高压水缝隙腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2021
22 Torres C, Johnsen R, Iannuzzi M. Crevice corrosion of solution annealed 25Cr duplex stainless steels: Effect of W on critical temperatures [J]. Corros. Sci., 2021, 178: 109053
doi: 10.1016/j.corsci.2020.109053
23 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
24 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
25 Ren A, Li C T, Liu F H, et al. Effect of Cl- on corrosion behavior of alloy 690 in high temperature and high pressure water solution [J]. Chin. J. Nonferrous Met., 2012, 22: 1082
任 爱, 李成涛, 刘飞华 等. Cl-对690合金在高温高压水中腐蚀行为的影响 [J]. 中国有色金属学报, 2012, 22: 1082
26 Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl concentration on corrosion behavior of reinforced concrete in soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
丁清苗, 高宇宁, 侯文亮 等. Cl浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705
doi: 10.11902/1005.4537.2020.207
27 Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018
doi: 10.1007/s10853-011-5889-6
28 Zhao J M, Zuo Y, Xiong J P, et al. Effect of pH value on corrosion behavior of low carbon steel in high salt waste water [J]. Mater. Prot., 2001, 34(7): 8
赵景茂, 左 禹, 熊金平 等. pH对低碳钢在高含盐污水中的腐蚀影响 [J]. 材料保护, 2001, 34(7): 8
29 Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
30 Zhao B J, Fan Y, Li Z Z, et al. Crevice corrosion behavior of 316L stainless steel paired with four different materials [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 332
赵柏杰, 范 益, 李镇镇 等. 不同类型接触面对316L不锈钢缝隙腐蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 332
doi: 10.11902/1005.4537.2019.198
31 Kamaraj A, Erning J W. Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids [J]. Corrosion, 2020, 76: 424
doi: 10.5006/3324
32 Song Y Q, Du C W, Li X G. Electrochemical corrosion behavior of carbon steel with bulk coating holidays [J]. J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 2006, 13: 37
33 Jakobsen P T, Maahn E. Temperature and potential dependence of crevice corrosion of AISI 316 stainless steel [J]. Corros. Sci., 2001, 43: 1693
doi: 10.1016/S0010-938X(00)00167-0
34 Wolfe R C, Weil K G, Shaw B A, et al. Measurement of pH gradients in the crevice corrosion of iron using a palladium hydride microelectrode [J]. J. Electrochem. Soc., 2005, 152: B82
doi: 10.1149/1.1851053
35 Li Y Z, Xu N, Liu G R, et al. Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid [J]. Corros. Sci., 2016, 112: 426
doi: 10.1016/j.corsci.2016.08.002
36 Picot A, D'Aléo A, Baldeck P L, et al. Long-lived two-photon excited luminescence of water-soluble europium complex: Applications in biological imaging using two-photon scanning microscopy [J]. J. Am. Chem. Soc., 2008, 130: 1532
doi: 10.1021/ja076837c pmid: 18193870
37 Lee M H, Park N, Yi C, et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe [J]. J. Am. Chem. Soc., 2014, 136: 14136
doi: 10.1021/ja506301n pmid: 25158001
38 Nishimoto M, Ogawa J, Muto I, et al. Simultaneous visualization of pH and Cl- distributions inside the crevice of stainless steel [J]. Corros. Sci., 2016, 106: 298
doi: 10.1016/j.corsci.2016.01.028
39 Trout T K, Bellama J M, Faltynek R A, et al. Effect of pH on the emission properties of aqueous tris (2, 6-dipicolinato) terbium (III) complexes [J]. Inorg. Chim. Acta, 1989, 155: 13
doi: 10.1016/S0020-1693(00)89273-7
40 Aoyama T, Sugawara Y, Muto I, et al. NH 4 + generation: The role of NO 3 - in the crevice corrosion repassivation of Type 316L stainless steel [J]. J. Electrochem. Soc., 2019, 166: C250
doi: 10.1149/2.0501910jes
41 Chen X, Gao F J, Wang Y L, et al. Transient numerical model for crevice corrosion of pipelines under disbonded coating with cathodic protection [J]. Mater. Des., 2016, 89: 196
doi: 10.1016/j.matdes.2015.09.047
42 Ding J W, Wang H T, Han E H. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60: 186
doi: 10.1016/j.jmst.2020.06.008
43 Liu F, Liu Q W, Chen J T, et al. Application of peridynamic method to analysis of crevice corrosion [J]. Bull. Sci. Technol., 2020, 36(3): 96
刘 飞, 刘齐文, 陈景涛 等. 近场动力学方法在缝隙腐蚀问题中的应用 [J]. 科技通报, 2020, 36(3): 96
44 Cao F H, Xia Y, Liu W J, et al. Basic principles and applications of SECM in metal corrosion [J]. J. Electrochem., 2013, 19: 393
[1] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[2] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[3] ZHU Zejie,ZHANG Qinhao,LIU Pan,ZHANG Jianqing,CAO Fahe. Application of Microelectrochemical Sensors in Monitoring of Localized Interface pH[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[4] Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[5] CHEN Dongxu, WU Xinqiang, HAN En-Hou. Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[6] WU Zhibin, WEI Yinghua, LI Jing, SUN Chao. EFFECT OF SOLUTION STATE ON CATHODIC POLARIZATION BEHAVIOR OF Q345 STEEL BENEATH SIMULATED DISBONDED COATING[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[7] YANG Jiaxing, ZHAO Ping, SUN Cheng, XU Jin. INFLUENCE OF SULPHATE REDUCING BACTERIA ON CREVICE CORROSION BEHAVIOR OF Q235 STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58.
[8] WANG Liwei, LI Xiaogang, DU Cuiwei, ZENG Xiaoxiao. RECENT ADVANCES IN LOCAL ELECTROCHEMICAL MEASUREMENT TECHNIQUES AND APPLICATIONS IN CORROSION RESEARCH[J]. 中国腐蚀与防护学报, 2010, 30(6): 498-503.
[9] CHEN Xu; LI Xiaogang; DU Cuiwei; LIANG Ping. EFFECTS OF SOLUTION ENVIRONMENTS ON CORROSION BEHAVIORS OF X70 STEELS UNDER SIMULATED DISBONDED COATING[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
[10] ;. Effectiveness of Cathodic Protection under Simulated Disbonded Coating on Pipelines[J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262 .
[11] Yiquan Song; Cuiwei Du; Xiaogang Li; Junwei Wu; Yonggui Yan. THE INFLUENCE OF HUNK OF COATING DEFECT ON CORROSIVE CHARACTERISTIC OF CARBON STEELS AND EFFECTIVENESS OF CATHODIC PROTECTION[J]. 中国腐蚀与防护学报, 2005, 25(2): 74-78 .
[12] Jingmao Zhao; Yu Zuo; Jinping Xiong. CORROSION BEHAVIOR OF MILD STEEL IN SIMULATED SOLUTIONS WITHIN PITS AND CREVICES[J]. 中国腐蚀与防护学报, 2002, 22(4): 193-197 .
[13] Fengzheng Li. CURRENT DISTRIBUTION IN A CATHODICALLY PROTECTED CREVICE[J]. 中国腐蚀与防护学报, 2000, 20(6): 338-343 .
[14] Jianzhong Yan. THE EFFECT OF LOCALIZED CORROSION ON FRETTINGATTACK OF 316l STAINLESS STEEL IN 0.9%NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2000, 20(4): 237-242 .
[15] Zhengfeng Li. Potential Distribution Inside a Cathodically Protected Crevice[J]. 中国腐蚀与防护学报, 2000, 20(3): 129-134 .
No Suggested Reading articles found!