Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 450-456    DOI: 10.11902/1005.4537.2015.233
Orginal Article Current Issue | Archive | Adv Search |
A Simple Two-step Process for Fabrication of Super-hydrophobic Nickel Film by Electro-deposition Technique
Shibing DING,Tengfei XIANG,Cheng LI(),Shunli ZHENG,Qi WANG,Mengping DU
College of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China
Download:  HTML  PDF(2808KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Micro-nano structural super-hydrophobic nickel coatings were prepared by a two-step electro-deposition technique on steel substrates. The surface morphology and wettability of the coatings were characterized by means of scanning electron microscope and water contact angle measurement. Their corrosion performance was investigated by polarization curves and electrochemical impedance technique. The results show that the petal-like micro-nano structural Ni coatings showed excellent hydrophobicity and much higher roughness rather than the bare steel. The coatings had a contact angle as high as 140.23°, which then can exceed to 150° after further modification with myristic acid. Besides, the coatings exhibit excellent corrosion resistance in the 3.5%NaCl solution.

Key words:  micro-nano structure      two-step electrodeposition      electronickelling      water contactangle      corrosion resistance     

Cite this article: 

Shibing DING,Tengfei XIANG,Cheng LI,Shunli ZHENG,Qi WANG,Mengping DU. A Simple Two-step Process for Fabrication of Super-hydrophobic Nickel Film by Electro-deposition Technique. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 450-456.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.233     OR     https://www.jcscp.org/EN/Y2016/V36/I5/450

Fig.1  SEM images of micro nickel film (a) and micro-nano nickel film under different magnifications(b~d)
Fig.2  Contact angles of water drops on Fe substrate (a), micro nickel film (b), micro-nano nickel film (c) and modified micro-nano nickel film (d)
Fig.3  Potentiodynamic polarization curves of Fe substrate, micro-nano nickel film and modified micro-nano nickel film
Fig.4  Schematic illustration of the self-assembly process of myristic acid on Ni film surface
Sample RΩ IcorrμAcm-2 φV (vs SCE) vgm-2h-1
Fe substrate 104.1 420 -0.672 4.3870
MNF 6535 6.235 -0.488 0.0684
MMNF 16520 2.982 -0.413 0.0328
Table 1  Parameters obtained by fitting potentiodynamic polarization curves in Fig.3
Fig.5  Nyquist (a) and Bode (b) plots of Fe substrate, micro-nano nickel film and modified micro-nano nickel film
Fig.6  Equivalent circuits models of EIS of Fe substrate (a), micro-nano nickel film (b) and modified micro-nano nickel film (c)
Fig.7  Nyquist plots of modified micro-nano nickel film after immersion in 3.5%NaCl solution for differenttime
Sample RsΩcm2 RctΩcm2 CPE-TΩ-1cm-2sp CPE-P RcΩcm2 CPE-T1Ω-1cm-2sp CPE-P1 CdlFcm-2 CcFcm-2 RairΩcm2 CairFcm-2
Fe substrate 6.455 153 2.65×10-3 0.88 --- --- --- --- --- --- ---
MNF 9.052 6623 5.73×10-5 0.83 136 6.53×10-6 0.86 --- --- --- ---
MMNF 12.29 18019 9.53×10-6 --- 112.2 --- --- 9.5×10-6 4.50×10-5 1.21×1010 4.09×10-6
Table 2  Parameters obtained by fitting Nyquist plots in Fig.5
Immersion time / h RsΩcm2 RctΩcm2 CPE-TΩ-1cm-2sp CPE-P RcΩcm2 CPE-T1Ω-1cm-2sp CPE-P1
24 9.639 12396 4.73×10-5 0.860 164.2 4.53×10-6 0.89952
48 9.305 7723 4.43×10-5 0.905 150.2 5.23×10-6 0.87952
Table 3  Parameters extracted from Nyquist plots in Fig.7
[1] Wu L K, Liu L, Li J.Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection[J]. Surf. Coat. Technol., 2010, 204(23): 3920
[2] Zhang X, Shi F, Niu J.Superhydrophobic surfaces: From structural control to functional application[J]. J. Mater. Chem., 2008, 18(6): 621
[3] Liu Y, Yin X, Zhang J.A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
[4] Zhou M, Pang X, Wei L.In situ grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties[J]. Appl. Surf. Sci., 2015, 337: 172
[5] Song J, Xu W, Liu X. Ultrafast fabrication of rough structures required by superhydrophobic surfaces on al substrates using an immersion method [J]. Chem. Eng. J., 2012, 211/212: 143
[6] Liu T, Chen S, Cheng S.Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochim. Acta, 2007, 52(28): 8003
[7] Zheng S L, Li C, Fu Q T.Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance[J]. Surf. Coat. Technol., 2015, 276: 341
[8] Liu H, Feng L, Zhai J.Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity[J]. Langmuir, 2004, 20: 5659
[9] Khorsand S, Raeissi K, Ashrafizadeh F.Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process[J]. Appl. Surf. Sci., 2014, 305: 498
[10] Chen Z, Hao L M, Chen A Q.A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method[J]. Electrochim. Acta, 2012, 59: 168
[11] Wu L K, Zhang X F, Hu J M.Corrosion protection of mild steel by one-step electrodeposition of superhydrophobic silica film[J]. Cor-ros. Sci., 2014, 85: 482
[12] Wang G, Guo Z, Liu W.Interfacial effects of superhydrophobic plant surfaces: A review[J]. J. Bionic Eng., 2014, 11(3): 325
[13] Takashi N, Masashi M, Katsuhiko N.The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15: 4321
[14] Eiji H, Shinobu F, Itaru H.Superhydrophobic perpendicular nanopin film by the bottom-up process[J]. J. Am. Chem. Soc., 2005, 127: 13458
[15] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988
[16] Cassie A, Baxter S.Wettability of porous surface[J]. Trans. Faraday Soc., 1944, 40: 546
[17] Wang N, Xiong D S, Deng Y L.Mechanically robust superhydrophobic steelicing, UV-durability, and corrosion resistance[J]. ACS Appl. Mater. Interfaces, 2015, 7: 6260
[18] Bico J, Thiele U, Quéré D.Wetting of texture surfaces[J]. Colloid Surf. A: Physicochem. Eng. Asp., 2002, 206: 41
[19] Ishizaki T, Hieda J, Saito N.Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition[J]. Electrochim. Acta, 2010, 55: 7094
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!