Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 890-895    DOI: 10.11902/1005.4537.2022.373
Current Issue | Archive | Adv Search |
Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C
YUAN Lei1, XIE Xin2, CHEN Minghui1(), LI Fengjie1, WANG Fuhui1
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shipbuilding Technology Research Institute (The 11th Institute of China State Shipbuilding Corporation), Shanghai 200032, China
Download:  HTML  PDF(7090KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel enamel coating was prepared on 20 steel, then the oxidation and NaCl deposit induced corrosion of the steel without and with enamel coating were studied in air at 400 ℃ for 1000 and 200 h respectively. It is revealed that the prepared enamel coating is compact, amorphous, and can be well combined with the substrate. There are no cracks and spallation of enamel coatings was observed after corrosion tests. The enamel coating has high thermal stability and corrosion resistance, which provides effective protection for the 20 steel substrate.

Key words:  enamel coating      20 steel      oxidation      chlorine salt corrosion     
Received:  29 November 2022      32134.14.1005.4537.2022.373
ZTFLH:  TG172  
Corresponding Authors:  CHEN Minghui, E-mail: mhchen@mail.neu.edu.cn   

Cite this article: 

YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 890-895.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.373     OR     https://www.jcscp.org/EN/Y2023/V43/I4/890

Fig.1  Surface (a) and cross-sectional (b) morphologies and XRD spectra (c) of as-prepared enamel coating on 20 steel
Fig.2  Oxidation kinetics of 20 steel with and without enamel coating at 400 ℃
Fig.3  Cross-sectional BSE-mode images of the bare 20 steel after oxidation at 400 ℃ for 10 h (a), 100 h (b), 500 h (c) and 1000 h (d). The inset in Fig.3a shows the surface morphology
Fig.4  Surface (a), cross section (b) and corresponding EDS line scannings (c) for the enamel coating oxidized at 400 °C for 1000 h
Fig.5  Mass changes of 20 steel without and with enamel coating at 400 ℃ under the condition of NaCl deposition
Fig.6  Surface morphologies (a, b) and cross sections (c, d) of 20 steel after NaCl pre-deposited corrosion at 400 °C for 5 h (a, c) and 200 h (b, d)
Fig.7  Surface (a), cross section (b) and XRD pattern (c) of enamel coating after NaCl pre-deposited corrosion at 400 ℃ for 200 h
1 Cheng H F, Hu Y N. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China [J]. Bioresour. Technol., 2010, 101: 3816
doi: 10.1016/j.biortech.2010.01.040
2 Chand Malav L, Yadav K K, Gupta N, et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities [J]. J. Cleaner Prod., 2020, 277: 123227
doi: 10.1016/j.jclepro.2020.123227
3 Ding Y, Zhao J, Liu J W, et al. A review of China's municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization [J]. J. Cleaner Prod., 2021, 293: 126144
doi: 10.1016/j.jclepro.2021.126144
4 Zhai W, Yang B, Zhang S H, et al. Study on high temperature chlorination corrosion of metallic materials on the waste incineration boilers [J]. IOP Conf. Ser.: Earth Environ. Sci., 2020, 450: 012006
5 Wang Y T, Zhao Y F, Wei X T, et al. High temperature chlorine corrosion of nickel based alloy coating for piping of waste incineration power plant [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
doi: 10.11902/1005.4537.2021.279
6 Wang G Y, Liu H, Chen T Z, et al. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment [J]. Corros. Sci., 2021, 189: 109592
doi: 10.1016/j.corsci.2021.109592
7 Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste [J]. Waste Manage., 2015, 37: 26
doi: 10.1016/j.wasman.2014.11.010 pmid: 25535103
8 Zhang X J, Liu H, Chen T Z, et al. Alleviation of thermal corrosion caused by molten ash on heat-exchange tubes in MSW incinerators: effects of Ni-, Co-, Fe-based HVOF coatings [J]. Proc. Combust. Inst., 2021, 38: 5453
doi: 10.1016/j.proci.2020.06.150
9 Chen J, Ninomiya Y, Naganuma H, et al. Development of thermal spraying materials through several corrosion tests for heat exchanger tube of incinerators [J]. Fuel Process. Technol., 2016, 141: 216
doi: 10.1016/j.fuproc.2015.08.040
10 Pérez F J, Castañeda S I, Hierro M P, et al. Comparative study of micro- and nano-structured coatings for high-temperature oxidation in steam atmospheres [J]. Oxid. Met., 2014, 81: 227
doi: 10.1007/s11085-013-9447-2
11 Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600 ℃ [J]. Corros. Sci., 2020, 169: 108599
doi: 10.1016/j.corsci.2020.108599
12 Mi F Y, Zhu S L. Long-term high temperature oxidation and hot corrosion behavior of an enamel coating on γ-TiAl intermetallics at 700 ℃ [J]. Corros. Sci. Prot. Technol., 2015, 27: 254
米丰毅, 朱圣龙. 搪瓷涂层700 ℃长期抗高温氧化和热腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2015, 27: 254
13 Li F J, Chen M H, Wang Q C, et al. Effect of Al2O3 content on microstructure and oxidation behavior of silicate enamel coatings on a Ni-based superalloy at 1000 ℃ [J]. Ceram. Int., 2022, 48: 25445
doi: 10.1016/j.ceramint.2022.05.222
14 Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
doi: 10.1016/j.corsci.2013.04.041
15 Wang X, Chen M H, Zhu S L, et al. Oxidation behavior of glass-based composite thermal barrier coating on K417G superalloy with a NiCoCrAlY bond coat at 1000 ℃ [J]. Surf. Coat. Technol., 2015, 270: 314
doi: 10.1016/j.surfcoat.2015.02.014
16 Shen M L, Zhu S L, Wang F H. Oxidation behavior of bilayered ceramic particle-reinforced enamel composite coating on nickel-based superalloy K38G at 1000 ℃ [J]. Corros. Sci. Prot. Technol., 2012, 24: 10
沈明礼, 朱圣龙, 王福会. 镍基高温合金上双层搪瓷-陶瓷复合涂层1000 ℃氧化机理 [J]. 腐蚀科学与防护技术, 2012, 24: 10
17 Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
doi: 10.1016/j.corsci.2017.08.012
18 Yin K, Yang Y, Frank Cheng Y. Permeability of coal tar enamel coating to cathodic protection current on pipelines [J]. Constr. Build. Mater., 2018, 192: 20
doi: 10.1016/j.conbuildmat.2018.10.123
19 Soundrapandian C, Bharati S, Basu D, et al. Studies on novel bioactive glasses and bioactive glass-nano-HAp composites suitable for coating on metallic implants [J]. Ceram. Int., 2011, 37: 759
doi: 10.1016/j.ceramint.2010.10.025
20 Oliver J A N, Su Y C, Lu X N, et al. Bioactive glass coatings on metallic implants for biomedical applications [J]. Bioact. Mater., 2019, 4: 261
21 Shao G X. Enamel [M]. Beijing: Light Industry Press, 1983: 360
邵规贤. 搪瓷学 [M]. 北京: 轻工业出版社, 1983: 360
22 Wu M Y, Chen M H, Zhu S L, et al. Protection mechanism of enamel-alumina composite coatings on a Cr-rich nickel-based superalloy against high-temperature oxidation [J]. Surf. Coat. Technol., 2016, 285: 57
doi: 10.1016/j.surfcoat.2015.11.026
23 Wen R C, Lu G W. Bubble structure─the unique structure of enamel coating [J]. Glass Enamel, 1989, 17(6): 29
闻瑞昌, 卢桂文. 气泡结构—搪瓷层的独特结构 [J]. 玻璃与搪瓷, 1989, 17(6): 29
24 Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: mechanisms [J]. Corros. Sci., 2014, 82: 316
doi: 10.1016/j.corsci.2014.01.033
25 Goursat A G, Smeltzer W W. Kinetics and morphological development of the oxide scale on iron at high temperatures in oxygen at low pressure [J]. Oxid. Met., 1973, 6: 101
doi: 10.1007/BF00614658
26 Schaeffer H A. Oxygen and silicon diffusion-controlled processes in vitreous silica [J]. J. Non-Cryst. Solids, 1980, 38/39: 545
27 Schaeffer H A. Diffusion-controlled processes in glass forming melts [J]. J. Non-Cryst. Solids, 1984, 67: 19
doi: 10.1016/0022-3093(84)90138-8
28 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implica-tions of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
[1] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[2] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[3] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[4] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[5] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[6] YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[7] SHENG Ganwen, QI Jing, LU Ping, XU Hong, HONG Miaomin. Molecular Simulation on Oxidation Mechanism of FeCr Alloy in High Temperature Steam Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 159-165.
[8] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[9] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[10] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[11] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[12] TIAN Weiping, GUO Liangshuai, WANG Yuhang, ZHOU Peng, ZHANG Tao. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[13] ZHU Zhongliang, MA Chenhao, LI Yuyang, XIAO Bo, YUAN Xiaohu, WANG Shuo, XU Hong, ZHANG Naiqiang. Oxidation Behavior of Nickel-based Alloy Inconel617B in Supercritical Water at 700 ℃[J]. 中国腐蚀与防护学报, 2022, 42(4): 655-661.
[14] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[15] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
No Suggested Reading articles found!