|
|
Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C |
YUAN Lei1, XIE Xin2, CHEN Minghui1( ), LI Fengjie1, WANG Fuhui1 |
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2.Shipbuilding Technology Research Institute (The 11th Institute of China State Shipbuilding Corporation), Shanghai 200032, China |
|
|
Abstract A novel enamel coating was prepared on 20 steel, then the oxidation and NaCl deposit induced corrosion of the steel without and with enamel coating were studied in air at 400 ℃ for 1000 and 200 h respectively. It is revealed that the prepared enamel coating is compact, amorphous, and can be well combined with the substrate. There are no cracks and spallation of enamel coatings was observed after corrosion tests. The enamel coating has high thermal stability and corrosion resistance, which provides effective protection for the 20 steel substrate.
|
Received: 29 November 2022
32134.14.1005.4537.2022.373
|
|
Corresponding Authors:
CHEN Minghui, E-mail: mhchen@mail.neu.edu.cn
|
1 |
Cheng H F, Hu Y N. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China [J]. Bioresour. Technol., 2010, 101: 3816
doi: 10.1016/j.biortech.2010.01.040
|
2 |
Chand Malav L, Yadav K K, Gupta N, et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities [J]. J. Cleaner Prod., 2020, 277: 123227
doi: 10.1016/j.jclepro.2020.123227
|
3 |
Ding Y, Zhao J, Liu J W, et al. A review of China's municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization [J]. J. Cleaner Prod., 2021, 293: 126144
doi: 10.1016/j.jclepro.2021.126144
|
4 |
Zhai W, Yang B, Zhang S H, et al. Study on high temperature chlorination corrosion of metallic materials on the waste incineration boilers [J]. IOP Conf. Ser.: Earth Environ. Sci., 2020, 450: 012006
|
5 |
Wang Y T, Zhao Y F, Wei X T, et al. High temperature chlorine corrosion of nickel based alloy coating for piping of waste incineration power plant [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
|
|
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
doi: 10.11902/1005.4537.2021.279
|
6 |
Wang G Y, Liu H, Chen T Z, et al. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment [J]. Corros. Sci., 2021, 189: 109592
doi: 10.1016/j.corsci.2021.109592
|
7 |
Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste [J]. Waste Manage., 2015, 37: 26
doi: 10.1016/j.wasman.2014.11.010
pmid: 25535103
|
8 |
Zhang X J, Liu H, Chen T Z, et al. Alleviation of thermal corrosion caused by molten ash on heat-exchange tubes in MSW incinerators: effects of Ni-, Co-, Fe-based HVOF coatings [J]. Proc. Combust. Inst., 2021, 38: 5453
doi: 10.1016/j.proci.2020.06.150
|
9 |
Chen J, Ninomiya Y, Naganuma H, et al. Development of thermal spraying materials through several corrosion tests for heat exchanger tube of incinerators [J]. Fuel Process. Technol., 2016, 141: 216
doi: 10.1016/j.fuproc.2015.08.040
|
10 |
Pérez F J, Castañeda S I, Hierro M P, et al. Comparative study of micro- and nano-structured coatings for high-temperature oxidation in steam atmospheres [J]. Oxid. Met., 2014, 81: 227
doi: 10.1007/s11085-013-9447-2
|
11 |
Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600 ℃ [J]. Corros. Sci., 2020, 169: 108599
doi: 10.1016/j.corsci.2020.108599
|
12 |
Mi F Y, Zhu S L. Long-term high temperature oxidation and hot corrosion behavior of an enamel coating on γ-TiAl intermetallics at 700 ℃ [J]. Corros. Sci. Prot. Technol., 2015, 27: 254
|
|
米丰毅, 朱圣龙. 搪瓷涂层700 ℃长期抗高温氧化和热腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2015, 27: 254
|
13 |
Li F J, Chen M H, Wang Q C, et al. Effect of Al2O3 content on microstructure and oxidation behavior of silicate enamel coatings on a Ni-based superalloy at 1000 ℃ [J]. Ceram. Int., 2022, 48: 25445
doi: 10.1016/j.ceramint.2022.05.222
|
14 |
Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
doi: 10.1016/j.corsci.2013.04.041
|
15 |
Wang X, Chen M H, Zhu S L, et al. Oxidation behavior of glass-based composite thermal barrier coating on K417G superalloy with a NiCoCrAlY bond coat at 1000 ℃ [J]. Surf. Coat. Technol., 2015, 270: 314
doi: 10.1016/j.surfcoat.2015.02.014
|
16 |
Shen M L, Zhu S L, Wang F H. Oxidation behavior of bilayered ceramic particle-reinforced enamel composite coating on nickel-based superalloy K38G at 1000 ℃ [J]. Corros. Sci. Prot. Technol., 2012, 24: 10
|
|
沈明礼, 朱圣龙, 王福会. 镍基高温合金上双层搪瓷-陶瓷复合涂层1000 ℃氧化机理 [J]. 腐蚀科学与防护技术, 2012, 24: 10
|
17 |
Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
doi: 10.1016/j.corsci.2017.08.012
|
18 |
Yin K, Yang Y, Frank Cheng Y. Permeability of coal tar enamel coating to cathodic protection current on pipelines [J]. Constr. Build. Mater., 2018, 192: 20
doi: 10.1016/j.conbuildmat.2018.10.123
|
19 |
Soundrapandian C, Bharati S, Basu D, et al. Studies on novel bioactive glasses and bioactive glass-nano-HAp composites suitable for coating on metallic implants [J]. Ceram. Int., 2011, 37: 759
doi: 10.1016/j.ceramint.2010.10.025
|
20 |
Oliver J A N, Su Y C, Lu X N, et al. Bioactive glass coatings on metallic implants for biomedical applications [J]. Bioact. Mater., 2019, 4: 261
|
21 |
Shao G X. Enamel [M]. Beijing: Light Industry Press, 1983: 360
|
|
邵规贤. 搪瓷学 [M]. 北京: 轻工业出版社, 1983: 360
|
22 |
Wu M Y, Chen M H, Zhu S L, et al. Protection mechanism of enamel-alumina composite coatings on a Cr-rich nickel-based superalloy against high-temperature oxidation [J]. Surf. Coat. Technol., 2016, 285: 57
doi: 10.1016/j.surfcoat.2015.11.026
|
23 |
Wen R C, Lu G W. Bubble structure─the unique structure of enamel coating [J]. Glass Enamel, 1989, 17(6): 29
|
|
闻瑞昌, 卢桂文. 气泡结构—搪瓷层的独特结构 [J]. 玻璃与搪瓷, 1989, 17(6): 29
|
24 |
Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: mechanisms [J]. Corros. Sci., 2014, 82: 316
doi: 10.1016/j.corsci.2014.01.033
|
25 |
Goursat A G, Smeltzer W W. Kinetics and morphological development of the oxide scale on iron at high temperatures in oxygen at low pressure [J]. Oxid. Met., 1973, 6: 101
doi: 10.1007/BF00614658
|
26 |
Schaeffer H A. Oxygen and silicon diffusion-controlled processes in vitreous silica [J]. J. Non-Cryst. Solids, 1980, 38/39: 545
|
27 |
Schaeffer H A. Diffusion-controlled processes in glass forming melts [J]. J. Non-Cryst. Solids, 1984, 67: 19
doi: 10.1016/0022-3093(84)90138-8
|
28 |
Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implica-tions of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|