Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 979-987    DOI: 10.11902/1005.4537.2021.325
Current Issue | Archive | Adv Search |
Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test
YANG Xiangyu1, GUAN Lei1(), LI Yu2, ZHANG Yongkang1, WANG Guan1, YAN Dejun2
1. Guangzhou Key Laboratory of Nontraditional Machining and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2. Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships, CSSC Huangpu Wenchong Shipbuilding Company Limited, Guangzhou 510715, China
Cite this article: 

YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 979-987.

Download:  HTML  PDF(6018KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Marine seawater pipeline and various fittings play an important role in cooling and firefighting, among which square elbow is widely used. However, it is found from daily maintenance that the square elbow is also the part mostly prone to leakage. In this paper, the effect of related parameters for pipe, such as diameter (A), inlet velocity (B), liquid flow direction (C), sand diameter (D) and sand mass flow (E) on the erosion-corrosion behavior of square elbow in the condition of liquid-solid two-phase flow was studied by means of orthogonal test and numerical simulation. The results show that the order of influence of different factors on erosion-corrosion of square elbow may be ranked as: B>A>E>C>D. The erosion rate of the square elbow reaches the maximum in case that B is 5 m/s, A is 30 mm, E is 0.03 kg/s, C is the flow direction horizontal and vertical upward, and D is 500 μm respectively. The area with large erosion rate is concentrated in the range between 60° and 90° of the axial angle of the elbow, whilst near 180° of the radial angle, i.e., where located on the outside of the elbow near the exit. The experimental results also verify that the corrosion rate on the outside of the elbow near the exit is higher in this working condition. At the same time, the results of tests by factors of optimal level also show that reducing the inlet velocity and increasing the pipe diameter can greatly reduce the erosion rate.

Key words:  erosion-corrosion      orthogonal test      numerical simulation      90° elbow      corrosion rate     
Received:  15 November 2021     
ZTFLH:  TG174  
Fund: Natural Science Foundation of Guangdong Province China(2021A1515010967);National Natural Science Foundation of China(52001074);Science and Technology Program of Guangzhou(202102020723);Science and Technology Program of Guangzhou(202102020626);China Postdoctoral Science Foundation(2020M682929)
About author:  GUAN Lei, E-mail: lguan@gdut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.325     OR     https://www.jcscp.org/EN/Y2022/V42/I6/979

Fig.1  Elbow model and flow direction: (a) horizontal to vertical down, (b) vertical up to horizontal, (c) vertical down to horizontal, (d) horizontal to vertical up
Fig.2  Relationship curves between the number of grids and the maximum erosion rate
LevelA: pipe diameter / mmB: inlet velocity / m·s-1C: flow directionD: sand diameter / μmE: sand mass flow / kg·s-1
1301a500.005
2382b1000.01
344.53c3000.02
4575d5000.03
Table 1  Factor level table
Fig.3  Tubular experimental device: 1. liquid storage tank (mixing device); 2. self priming screw pump (regulating flow); 3. test bend section
Fig.4  Arrangement of array electrodes in the elbow during erosion test
Test planFactor

Max erosion rate

10-8 kg/m2·s

A:pipe diameter mmB:inlet velocity m·s-1C: flow directionD: sand diameter μmE:sand mass flow kg·s-1
1: A1B1C1D1E1301a500.0050.084
2: A1B2C2D2E2302b1000.011.39
3: A1B3C3D3E3303c3000.028.6
4: A1B4C4D4E4305d5000.0396.74
5: A2B1C2D3E4381b3000.030.35
6: A2B2C1D4E3382a5000.021.85
7: A2B3C4D1E2383d500.011.65
8: A2B4C3D2E1385c1000.0053.77
9: A3B1C3D4E244.51c5000.010.42
10: A3B2C4D3E144.52d3000.0050.89
11: A3B3C1D2E444.53a1000.033.4
12: A3B4C2D1E344.55b500.027.26
13: A4B1C4D2E3571d1000.020.13
14: A4B2C3D1E4572c500.031.04
15: A4B3C2D4E1573b5000.0050.87
16: A4B4C1D3E2575a3000.012.48
k126.70.251.952.511.4---
k21.911.292.472.171.49---
k32.993.633.463.084.46---
k41.1327.5624.8524.9725.38---
R25.5727.3122.922.823.98---
Factor order21453---
Table 2  Numerical simulation results based on orthogonal experiment
Fig.5  Factor-indicator trend graphs: (a) pipe diameter, (b) inlet velocity, (c) flow direction, (d) sand diameter, (e) sand mass flow
Fig.6  Erosion rate distribution cloud maps on x-y plane (a) and y-z plane (b)
Fig.7  Erosion rate distribution cloud maps on x-y plane (a) and y-z plane (b) in the erosion test under the optimal condition (B1A4E1C1D1)
Fig.8  OCP vs. time curves of the electrodes 1-5 (a) and their polarization curves after 12 h experiment (b)
ElectrodeOCP / VEcorr / Vba / mv·dec-1bc / mv·dec-1Icorr / A·cm-2
1-0.272±0.001-0.29677.88189.752.321×10-5
2-0.273±0.001-0.29173.87189.572.498×10-5
3-0.274±0.002-0.28673.07192.272.688×10-5
4-0.278±0.003-0.28474.15186.323.127×10-5
5-0.280±0.002-0.28575.95179.923.422×10-5
Table 3  OCP values of the electrodes 1-5 and fitting data of their polarization curves after 12 h experiment
Fig.9  Nyquist (a) and Bode (b) plots of the electrodes 1-5 after 12 h experiment and corresponding equivalent circuit diagram (c)
ElectrodeRs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2
1 (0°)2.7197.7395.6
2 (25°)2.6124.8175.8
3 (45°)2.894.5101.5
4 (65°)3.099.795.2
5 (90°)3.198.789.9
Table 4  Fitting results of electrochemical impedance spectra (the area of electrodes: 0.2826 cm2)
Fig.10  Erosion-corrosion morphologies of the electrodes 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e)
[1] Tong Y, Song Q N, Li H L, et al. A comparative assessment on cavitation erosion behavior of typical copper alloys used for ship propeller [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 639
(佟瑶, 宋亓宁, 李慧琳 等. 三种典型船舶螺旋桨用铜合金的空蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 639)
[2] Ma A L. Studies on corrosion mechanism, grain boundary engineering and corrosion product film of the marine 90/10 Cu-Ni tubes [D]. Beijing: University of Chinese Academy of Sciences, 2014
(马爱利. 海水管路用B10合金腐蚀机制、晶界工程及腐蚀产物膜研究 [D]. 北京: 中国科学院大学, 2014)
[3] Yang H, Yang R. Failure analysis of leaking of seawater tube in a ship [J]. Dev. Appl. Mater., 2016, 31(3): 28
(杨辉, 杨瑞. 某船海水管路泄漏失效原因分析 [J]. 材料开发与应用, 2016, 31(3): 28)
[4] Shen H, Gao F, Zhang G G, et al. Material selection and anti-corrosion measures of seawater piping in warship [J]. Ship Eng., 2002, 24(4): 43
(沈宏, 高峰, 张关根 等. 舰船海水管系选材及防腐对策 [J]. 船舶工程, 2002, 24(4): 43)
[5] Zheng Y G, Yao Z M, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion [J]. Corros. Sci. Prot. Technol., 2000, 12: 36
(郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制 [J]. 腐蚀科学与防护技术, 2000, 12: 36)
[6] Reyes M, Neville A. Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore [J]. Wear, 2003, 255: 1143
doi: 10.1016/S0043-1648(03)00151-0
[7] Peng W S, Cao X W. Influence of pipe parameters on flow field of liquid-solid two-phase flow and erosion of pipe bend [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 87
(彭文山, 曹学文. 管道参数对液/固两相流弯管流场及冲蚀影响分析 [J]. 中国腐蚀与防护学报, 2016, 36: 87)
[8] Tian B R, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry. I: effects of hydrodynamic condition [J]. Corros. Sci., 2008, 50: 773
doi: 10.1016/j.corsci.2007.11.008
[9] Zeng L, Shuang S, Guo X P, et al. Erosion-corrosion of stainless steel at different locations of a 90° elbow [J]. Corros. Sci., 2016, 111: 72
doi: 10.1016/j.corsci.2016.05.004
[10] Zeng L, Zhang G A, Guo X P. Erosion-corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
doi: 10.1016/j.corsci.2014.04.045
[11] Jia W L, Zhang Y R, Li C J, et al. Experimental and numerical simulation of erosion-corrosion of 90° steel elbow in shale gas pipeline [J]. J. Nat. Gas Sci. Eng., 2021, 89: 103871
doi: 10.1016/j.jngse.2021.103871
[12] Zhang E B, Zeng D Z, Zhu H J, et al. Numerical simulation for erosion effects of three-phase flow containing sulfur particles on elbows in high sour gas fields [J]. Petroleum, 2018, 4: 158
doi: 10.1016/j.petlm.2017.12.008
[13] Redondo C, Chávez-Modena M, Manzanero J, et al. CFD-based erosion and corrosion modeling in pipelines using a high-order discontinuous Galerkin multiphase solver [J]. Wear, 2021, 478/479: 203882
[14] Peng W S, Cao X W. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 556
(彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析 [J]. 中国腐蚀与防护学报, 2015, 35: 556)
[15] Cao X W, Xu K, Peng W S. Simulation and analysis of liquid-solid two-phase flow erosion failure in pipe bends [J]. Surf. Technol., 2016, 45(8): 124
(曹学文, 胥锟, 彭文山. 弯管液固两相流冲蚀失效模拟分析 [J]. 表面技术, 2016, 45(8): 124)
[16] Shen Y X, Zhao H J, Peng H P, et al. Erosion corrosion simulation of liquid-solid two-phase flow in 90 degree vertical bend pipes [J]. Corros. Prot., 2020, 41(1): 50
(沈雅欣, 赵会军, 彭浩平 等. 90°竖直弯管的液固两相流冲刷腐蚀模拟 [J]. 腐蚀与防护, 2020, 41(1): 50)
[17] Huser A, Kvernvold O. Prediction of sand erosion in process and pipe components [A]. Proceedings of the 1st North American Conference on Multiphase Technology [C]. Banff, 1998: 217
[18] Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications [J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
doi: 10.1016/j.jngse.2014.10.001
[19] Lin Z, Ruan X D, Zhu Z C, et al. Numerical study of solid particle erosion in a cavity with different wall heights [J]. Powder Technol., 2014, 254: 150
doi: 10.1016/j.powtec.2014.01.002
[20] Liu H L, Dong L, Wang Y, et al. Overview on mesh generation methods in CFD of fluid machinery [J]. Fluid Mach., 2010, 38(4): 32
(刘厚林, 董亮, 王勇 等. 流体机械CFD中的网格生成方法进展 [J]. 流体机械, 2010, 38(4): 32)
[21] Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experiment [J]. Exp. Technol. Manage., 2010, 27(9): 52
(刘瑞江, 张业旺, 闻崇炜 等. 正交试验设计和分析方法研究 [J]. 实验技术与管理, 2010, 27(9): 52)
[22] Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4+ [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
(王家明, 杨昊东, 杜敏 等. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609)
[23] Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
(李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429)
[24] Dai M J, Liu J, Huang F, et al. Pitting corrosion behavior of X100 pipeline steel in a simulated acidic soil solution under fluctuated cathodic protection potentials based on orthogonal method [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 425
(戴明杰, 刘静, 黄峰 等. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 425)
[25] Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
(任莹, 赵会军, 周昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508)
[26] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 125
(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 125)
[27] Liu Y H. Electrochemical Measurement Technology [M]. Beijing: Beijing Institute of Aeronautics Press, 1987: 360
(刘永辉. 电化学测试技术 [M]. 北京: 北京航空学院出版社, 1987: 360)
[28] Peng W S, Cao X W, Hou J, et al. Experiment and numerical simulation of sand particle erosion under slug flow condition in a horizontal pipe bend [J]. J. Nat. Gas Sci. Eng., 2020, 76: 103175
doi: 10.1016/j.jngse.2020.103175
[29] Liu J G, Bakedashi W, Li Z L, et al. Effect of flow velocity on erosion-corrosion of 90-degree horizontal elbow [J]. Wear, 2017, 376/377: 516
[30] Hu Z W, Liu J G, Xing R, et al. Erosion-corrosion behavior of 90° horizontal elbow in single phase flow [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 115
(胡宗武, 刘建国, 邢蕊 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 115)
[1] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[2] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[3] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[4] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[5] KOU Jie, REN Zhe. Research Progress of Regional Cathodic Protection Potential Distribution of Tank Floor Based on Numerical Calculation[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
[6] SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[7] GUO Zihan, ZHANG Jun, LI Hui. Optimal Design for Anti-erosion of Pneumatic Conveying Elbow with Rib Structure[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[8] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[9] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[10] PENG Yizhan, GONG Fuyuan, ZHAO Yuxi. Distribution of Stray Current Induced Corrosion of Reinforced Bars Within Concrete Based on Electric Field Analysis and Experiment with Transparent Imitated Concrete[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[11] MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[12] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[13] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[14] DING Qingmiao, GAO Yuning, HOU Wenliang, QIN Yongxiang. Influence of Cl- Concentration on Corrosion Behavior of Reinforced Concrete in Soil[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[15] ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
No Suggested Reading articles found!