Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 111-118    DOI: 10.11902/1005.4537.2022.028
Current Issue | Archive | Adv Search |
Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water
LI Wenju1,2, ZHANG Huixia2, ZHANG Hongquan1(), HAO Fuyao2, TONG Hongtao2
1.School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
Download:  HTML  PDF(8445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to promote the application of Ti80 alloy for marine engineering, the influence of temperature variation on the stress corrosion behavior of the Ti-alloy was studied via constant displacement stress corrosion test and slow strain rate tensile test (SSRT), as well as electrochemical impedance spectroscopy, Mott-Schottky curve measurement, three-dimensional video microscopy and scanning electron microscopy (SEM). The results show that in atmospheric pressure and temperature range of 5-35 ℃, with the decrease of temperature, the stress corrosion cracking sensitivity index of Ti80 alloy gradually increases, the value of critical strength factor K1SCC gradually decreases, and the stress corrosion tendency increases. In low-temperature seawater, the fractured surface of Ti80 alloy even presents characteristics of locally river-like and tearing ridge-like quasi-cleavage. This may be ascribed to that on the local area around the crack tip, the formed passivation film possesses small resistance, while there exists more defects, and easy stacking of dislocations, thus resulted in local stress concentration in the passivation film, further due to the synergy of the existed film stress and the applied stress, the crack nucleation and expansion may speed up, therewith damages on the passivation film may be hard repaired, and thus the stress corrosion rate may spontaneously be accelerated.

Key words:  titanium      temperature      constant displacement stress corrosion      slow stool rate stretch      passive film     
Received:  25 January 2022      32134.14.1005.4537.2022.028
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51931008)

Cite this article: 

LI Wenju, ZHANG Huixia, ZHANG Hongquan, HAO Fuyao, TONG Hongtao. Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 111-118.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.028     OR     https://www.jcscp.org/EN/Y2023/V43/I1/111

Fig.1  Specimen dimension drawing (a) and sampling direction (b), shape and size of sample used in slow strain rate tensile test (c)
Fig.2  Stress-strain curves of Ti80 Ti-alloy in atmospheric environment and seawater at different temperatures
Fig.3  Reduction of area, elongation after the break (a), and damage coefficients (b) of Ti80 Ti-alloy under different conditions
Fig.4  Photos of macroscopic fractures of Ti80 Ti-alloy in seawater at 5 ℃ (a), 15 ℃ (b), 25 ℃ (c) and 35 ℃ (d), and atmospheric environment (e)
Fig.5  Microfracture morphologies of Ti80 Ti-alloy in seawater at 5 ℃ (a), 15 ℃ (b), 25 ℃ (c) and 35 ℃ (d), and atmospheric environment (e)
Fig.6  Macroscopic fracture morphologies of Ti80 Ti-alloy after constant displacement tests in seawater at 5 ℃ (a), 15 ℃ (b), 25 ℃ (c) and 35 ℃ (d)
T / ℃Crack length mm

K1SCC

MPa·m0.5

Crack growth rate m·s-1
56.99356.372.310×10-9
154.61664.631.526×10-9
253.96866.841.312×10-9
353.39575.691.123×10-9
Table 1  Stress corrosion cracking parameters of Ti80 Ti-alloy in seawater at different temperatures
T / ℃Rs / Ω·cm2Q1 / Ω-1·cm-2·snn1R1 / Ω·cm2Q2 / Ω-1·cm-2·snn2R2 / Ω·cm2
511.672.486×10-50.9147537.12.404×10-50.45012.654×105
159.1861.924×10-50.935891154.763×10-60.80384.326×105
257.3402.220×10-50.918343258.843×10-70.95612.115×106
356.2342.051×10-50.942116892.264×10-60.96392.465×106
Table 2  Fitting parameters of EIS of Ti80 Ti-alloy in seawater at different temperatures
Fig.7  Macroscopic fracture morphologies of Ti80 Ti-alloy samples after constant displacement tests in seawater at 5 ℃ (a, b), 15 ℃ (c, d), 25 ℃ (e, f) and 35 ℃ (g, h)
Fig.8  Nyquist (a) and Bode (b) plots and equivalent circuit model (c) of Ti80 Ti-alloy in seawater at different temperatures
Fig.9  Mott-schottky curves of Ti80 Ti-alloy in seawater at different temperatures
Fig.10  Efb and Nd of passive films formed on Ti80 Ti-alloy during immersion in seawater at different temperatures
1 Fang Z G, Liu B, Li G M, et al. Requirement and development analysis of warship equipment materials system [J]. Mater. China, 2014, (7): 385
方志刚, 刘斌, 李国明 等. 舰船装备材料体系需求与发展分析 [J]. 中国材料进展, 2014, (7): 385
2 Huang X Y, Liu B, Li X. Applications of titanium alloys in warship building [J]. South. Met., 2005, (6): 10
黄晓艳, 刘波, 李雪. 钛合金在舰船上的应用 [J]. 南方金属, 2005, (6): 10
3 Zhou W M. Review on research progress of marine titanium alloy equipment materials and preparation technology [J]. Chem. Enterp. Manag., 2017, (21): 92
周文萌. 船用钛合金装备材料及制备技术研究进展评述 [J]. 化工管理, 2017, (21): 92
4 Liu R, Cui Y, Liu L, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2020, 165: 108402
doi: 10.1016/j.corsci.2019.108402
5 Wang H J, Wang J, Peng X, et al. Corrosion behavior of three titanium alloys in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 75
王海杰, 王佳, 彭欣 等. 钛合金在3.5%NaCl溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 75
6 Cao S, Lim C V S, Hinton B, et al. Effects of microtexture and Ti3Al (α2) precipitates on stress-corrosion cracking properties of a Ti-8Al-1Mo-1V alloy [J]. Corros. Sci., 2017, 116: 22
doi: 10.1016/j.corsci.2016.12.012
7 Xue X H, Liu Y Y, Wang M T. Effect of microstructure on stress corrosion cracking property of TC18 alloy [J]. Heat Treat. Met., 2018, 43(10): 122
薛希豪, 刘莹莹, 王梦婷. 显微组织对TC18合金应力腐蚀性能的影响 [J]. 金属热处理, 2018, 43(10): 122
8 Dong Y C, Fang Z G, Chang H, et al. Service performance of titanium alloy in marine environment [J]. Mater. China, 2020, 39(3): 185
董月成, 方志刚, 常辉 等. 海洋环境下钛合金主要服役性能研究 [J]. 中国材料进展, 2020, 39(3): 185
9 Li J B, Zuo J E. Influence of temperature on the electrochemical property of passive film formed on X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 40
李金波, 左剑恶. 温度对X80管线钢钝化膜电化学性能的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 40
10 Yuan H Z, Liu Z Y, Li X G, et al. Influence of applied potential on the stress corrosion behavior of X90 pipeline steel and its weld joint in simulated solution of near neutral soil environment [J]. Acta Metall. Sin., 2017, 53: 797
doi: 10.11900/0412.1961.2016.00530
苑洪钟, 刘智勇, 李晓刚 等. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2017, 53: 797
doi: 10.11900/0412.1961.2016.00530
11 Wu K Y. The sensitivity of welded steel joint to stress corrosion in wet H2S medium [J]. J. Univ. Petro, China, 1990, 14(3): 79
吴开源. 15MnVN与16MnR钢焊接接头在湿H2S介质中应力腐蚀破裂敏感性的研究 [J]. 石油大学学报 (自然科学版), 1990, 14(3): 79
12 Zhu Y Q, Su Y, Shu C, et al. Research on influence of marine atmosphere on stress corrosion of TA15 titanium alloy [J]. Equip. Environ. Eng., 2012, 9(2): 85
朱玉琴, 苏艳, 舒畅 等. 海洋大气对TA15钛合金应力腐蚀影响研究 [J]. 装备环境工程, 2012, 9(2): 85
13 Shukla A K, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions [J]. Intermetallics, 2005, 13: 631
doi: 10.1016/j.intermet.2004.10.001
14 Yang Y J, Zhang X Y, Liu M H. Galvanic corrosion of TB5 titanium alloy of anodic oxidation film [J]. J. Aeronaut. Mater., 2015, 35(5): 57
杨勇进, 张晓云, 刘明辉. TB5钛合金脉冲阳极氧化膜电偶腐蚀性能研究 [J]. 航空材料学报, 2015, 35(5): 57
15 Yang F, Wu J P, Guo D Z, et al. Research on electrochemical corrosion of Ti-Ta alloy in nitric acid [J]. Titanium Ind. Prog., 2018, 35(2): 22
杨帆, 吴金平, 郭荻子 等. Ti-Ta合金在硝酸中电化学腐蚀研究 [J]. 钛工业进展, 2018, 35(2): 22
16 Shi K Y, Zhang J Z, Zhang Y, et al. Preparation and corrosion resistance of Nb2N coating on TC4 Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 313
史昆玉, 张进中, 张毅 等. Nb2 N涂层制备及其耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 313
17 Wang L, Yi D Q, Liu H Q, et al. Effect of Ru on corrosion behavior of Ti-6Al-4V alloy and its mechanism [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 25
王乐, 易丹青, 刘会群 等. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究 [J]. 中国腐蚀与防护学报, 2020, 40: 25
18 Xu J, Bao X K, Jiang S Y. In vitro corrosion resistance of Ta2N nanocrystalline coating in simulated body fluids [J]. Acta Metall. Sin., 2018, 54: 443
doi: 10.11900/0412.1961.2017.00246
徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究 [J]. 金属学报, 2018, 54: 443
doi: 10.11900/0412.1961.2017.00246
19 Jiang Z L, Dai X, Middleton H. Investigation on passivity of titanium under steady-state conditions in acidic solutions [J]. Mater. Chem. Phys., 2011, 126: 859
doi: 10.1016/j.matchemphys.2010.12.028
20 Yan S K, Zheng D J, Wei J, et al. Electrochemical activation of passivated pure titanium in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 123
严少坤, 郑大江, 韦江 等. 钝性纯Ti在人工海水中的电化学活化行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 123
21 Jovic V D, Barsoum M W. Corrosion behavior and passive film characteristics formed on Ti, Ti3SiC2, and Ti4AlN3 in H2SO4 and HCl [J]. J. Electrochem. Soc., 2004, 151: B71
doi: 10.1149/1.1637897
22 Silva R A, Walls M, Rondot B, et al. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery [J]. J. Mater. Sci. Mater. Med., 2002, 13: 495
doi: 10.1023/A:1014779008598
23 Schneider M, Schroth S, Schilm J, et al. Micro-EIS of anodic thin oxide films on titanium for capacitor applications [J]. Electrochim. Acta, 2009, 54: 2663
doi: 10.1016/j.electacta.2008.11.003
24 Liu X, Ran D, Meng H M, et al. Effect of surface state on corrosion resistance of TC4 Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 828
刘星, 冉斗, 孟惠民 等. 表面状态对TC4钛合金的耐蚀性影响 [J]. 中国腐蚀与防护学报, 2021, 41: 828
25 Zheng Z J, Gao Y, Gui Y, et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing [J]. Corros. Sci., 2012, 54: 60
doi: 10.1016/j.corsci.2011.08.049
26 Yang H L, Xue H, Yang F Q, et al. Effect of film-induced stress on mechanical properties at stress corrosion cracking tip [J]. Rare Met. Mater. Eng., 2017, 46: 3595
doi: 10.1016/S1875-5372(18)30043-2
[1] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[3] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[4] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[5] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[6] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[7] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[8] LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[9] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[10] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[11] QU Zuopeng, ZHANG Beibei, XIE Guangxiao, YANG Yuxi, WANG Yongtian, TIAN Xinli, WANG Haijun. Research Progress on Protection Technology for Waste Incinerator Heating Surfaces[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
[12] ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[13] SONG Jian, ZHOU Wenhui, WANG Jinlong, SUN Wenyao, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Block Materials of Yttria Stabilized Zirconia with Different Content of Y2O3 in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[14] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[15] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
No Suggested Reading articles found!