Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 583-589    DOI: 10.11902/1005.4537.2021.234
Current Issue | Archive | Adv Search |
Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method
WANG Minghao1, WANG Huan2, LIU Rui1, MENG Fandi1, LIU Li1(), WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeasten University, Shenyang 110819, China
2.College of Information Science and Engineering, Northeastern University, Shenyang 110169, China
Download:  HTML  PDF(4543KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of micro-morphology for the couple of NiCrAlY coating/N5 high-temperature alloy system during service at high temperature, namely the precipitated TCP-phases within the substrate, the interface of coating/substrate, and the formed oxide scale etc., was studied by means of image processing technology, aiming to acquire the information related with their characteristics for the identification and retrieval of the relevant features of coating/alloy systems. Based on the acquired date-sets from 3600 frames of cross-sectional feature images of 64×64 pixels, a convolutional neural network (CNN) was established for classification and identification of the TCP phase, the interface of coating/substrate, and the oxide scale via a deep learning technique. The convolutional neural networks with two or three convolutional layers were respectively trained, so that the classification and identification of these three kinds of features, as well as the sliding window retrieval positioning are realized, thereby, the test set accuracy was 98% or 90.67%, respectively, for the neural network of two or three convolution layers coupled with the RMSProp optimizer. The test set accuracy for the convolutional neural network with three convolutional layers coupled with the Adam optimizer was 99.17%. This network performs best in retrieving the desired three features for images of 1024×943 pixel, correspondingly, the retrieval accuracy even can reach 100%.

Key words:  N5/NiCrAlY      convolutional neural networks      image recognition      high temperature corrosion     
Received:  05 September 2021     
ZTFLH:  TG172  
Fund: National Key R&D Program of China(2017YFB0702303)
Corresponding Authors:  LIU Li     E-mail:  liuli@mail.neu.edu.cn
About author:  LIU Li, E-mail: liuli@mail.neu.edu.cn

Cite this article: 

WANG Minghao, WANG Huan, LIU Rui, MENG Fandi, LIU Li, WANG Fuhui. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 583-589.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.234     OR     https://www.jcscp.org/EN/Y2022/V42/I4/583

Fig.1  Needle phase feature maps obtained after the first convolutional layer
Fig.2  Needle phase pooling maps after the first max pooling layer
LayerConnection typeOutput shapeParam
Input layer(64, 64, 3)64×64×3
Conv layer_1ReLU(62, 62, 32)(3×3, 32)
Pooling layer_1(31, 31, 32)

MaxPooling,

stride=2

Conv layer_2ReLU(29, 29, 64)(3×3, 32)
Pooling layer_2(14, 14, 64)

MaxPooling,

stride=2

Conv layer_3ReLU(12, 12, 64)(3×3, 64)
Pooling layer_3(6, 6, 64)

MaxPooling,

stride=2

Full connected layer2304Full
Output layer3SoftMax
Table 1  Parameters of the nework
Fig.3  Partial pictures in convolutional neural network data set
Fig.4  Characteristic pictures produced by image Data Generator image processor
Fig.5  Micro-morphology of multi-arc ion plating NiCrAlY coating: (a) 1000 ℃/500 h, (b) 1000 ℃/1000 h
NumberConv numberOptimizerTest Accuracy
12RMSProp0.9800
23RMSProp0.9067
34RMSProp0.9917
43Adam0.9917
54Adam0.9833
Table 2  Model parameter setting and accuracy
Fig.6  Recognition results of 8-layers convolutional neural network (Adam) for the interface after different oxidation environments: (a) 950 ℃/100 h, (b) 950 ℃/500 h, (c) 1000 ℃/1000 h, (d) 1000 ℃/500 h
Fig.7  Accuracy and loss rate curves of 6-layer convolutional neural network (a), 8-layer convolutional neural network (RMSProp) (b), 10-layer convolutional neural network (RMSProp) (c), 8-layer convolutional neural network (Adam) (d) and 10-layer convolutional neural network (Adam) with iterations the 8-layers convolutional neural network (RMSProp) with iterations (e)
1 Yang Z Z, Kuang N, Fan L, et al. Review of image classification algorithms based on convolutional neural networks [J]. J. Sign. Process., 2018, 34: 1474
杨真真, 匡楠, 范露 等. 基于卷积神经网络的图像分类算法综述 [J]. 信号处理, 2018, 34: 1474
2 Wang D K. Weld defect classification and recognition of the in-service pipeline based on BP neural network [J]. Comput. Tomogr. Theory Appl., 2012, 21: 43
王道阔. 基于BP神经网络的在役管线焊缝故障缺陷的分类识别 [J]. CT理论与应用研究, 2012, 21: 43
3 Zou L Y, Wu S Q, Fang H P, et al. Survey on material perception based on computer vision [J]. Appl. Res. Comput., 2019, 36: 2894
邹凌云, 伍世虔, 方红萍 等. 基于计算机视觉的材料感知技术综述 [J]. 计算机应用研究, 2019, 36: 2894
4 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
5 Wang X Y, Xin L, Wei H, et al. Progress of high-temperature protective coatings [J]. Corros. Sci. Prot. Technol., 2013, 25: 175
王心悦, 辛丽, 韦华 等. 高温防护涂层研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 175
6 Beele W, Czech N, Quadakkers W J, et al. Long-term oxidation tests on a re-containing MCrAlY coating [J]. Surf. Coat. Technol., 1997, 94/95: 41
7 Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108: 73
8 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
9 Wen M, Jordan E H, Gell M. Remaining life prediction of thermal barrier coatings based on photoluminescence piezospectroscopy measurements [J]. J. Eng. Gas Turb. Power, 2005, 128: 610
doi: 10.1115/1.2135820
10 Huang Q Y, Li H K. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 2000
黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000
11 Wang B, Gong J, Wang A Y, et al. Oxidation behaviour of NiCrAlY coatings on Ni-based superalloy [J]. Surf. Coat. Technol., 2002, 149: 70
doi: 10.1016/S0257-8972(01)01427-X
12 Li W Z, Li Y Q, Yi D Q, et al. Microstructural evolution and failure mechanism of NiCrAlY coating systems during different cycled oxidation [J]. Chin. J. Nonferrrous Met., 2013, 23: 417
李伟洲, 李月巧, 易丹青 等. 不同冷热循环条件下NiCrAlY涂层体系的微观组织演变规律及失效机理 [J]. 中国有色金属学报, 2013, 23: 417
13 Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
doi: 10.1016/j.actamat.2018.08.018
14 Chen W R, Wu R, Marple B R, et al. TGO growth behaviour in TBCs with APS and HVOF bond coats [J]. Surf. Coat. Technol., 2008, 202: 2677
doi: 10.1016/j.surfcoat.2007.09.042
15 Huang X W, Jiang X H, Li C C, et al. Research progress of coating life prediction and reliability evaluation [J]. Mater. Prot., 2018, 51(7): 110
黄烯望, 姜新华, 李长春 等. 涂层寿命预测与可靠性评价的研究进展 [J]. 材料保护, 2018, 51(7): 110
16 Chen H J, Li Q L, Cheng X D, et al. Influence of thermally grown oxide on failure of thermal barrier coating [J]. Mater. Prot., 2012, 45(3): 5
陈慧君, 李其连, 程旭东 等. TGO对热障涂层失效的作用分析 [J]. 材料保护, 2012, 45(3): 5
[1] GUAN Yu, LIU Guangming, ZHANG Minqiang, LIU Huanhuan, LIU Zhihao, GONG Bingbing. High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[2] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[3] CHEN Tuchun, XIANG Junhuai, JIANG Longfa, XIONG Jian, BAI Lingyun, XU Xunhu, XU Xincheng. High-temperature Corrosion Behavior of Q235 Steel in Oxidizing Atmosphere Containing Chlorine[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[4] Mingming ZHANG,Li XIN,Xueyong DING,Shujiang GENG,Shenglong ZHU,Fuhui WANG. Corrosion Resistance of Alternately Multilayered Coating Ti/TiAlN on Ti-alloy Ti-6Al-4V Beneath a Solid NaCl Film in Atmosphere of Water Vapor and Oxygen at 600 ℃[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[5] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[6] HUANG Bensheng,YIN Wenfeng,WANG Xiaohong,SHI Yijun. Corrosion Behavior of Steels Used in Making Crude Oil Distillation Unit in High Temperature Crude Oil Fractions[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[7] PAN Taijun, CHEN Degui, ZHANG Ke, HU Jing. HIGH TEMPERATURE CORROSION OF NF616 AND 12CrMoV IN SIMULATED WASTE-GASIFICATION ENVIROMENTS[J]. 中国腐蚀与防护学报, 2011, 31(6): 457-461.
[8] DONG Zehua, HE Jinbei, GUO Xingpeng,ZHANG Yaoxiang, HAN Jicheng. HIGH TEMPERATURE INTERACTIVE CORROSION OF NAPHTHENIC ACID AND ORGANIC SULPHIDE ON Cr5Mo STEEL IN SYNTHETIC REFINING MIXTURE[J]. 中国腐蚀与防护学报, 2011, 31(3): 219-224.
[9] Xin Ren; Huaiyu Yang; Fuhui Wang; Zhu Zhao; Yawei Shao. HIGH TEMPERATURE CORROSION BEHAVIOR OF A3 STEELIN V2O5+Na2SO4 SALTS AT 700 ℃[J]. 中国腐蚀与防护学报, 2002, 22(2): 92-94 .
[10] Cao Tieliang; Pan Huiying; Dong Hehua and Zhang Yunshu(Shanghai Institute of Metallurgy; Chinese Academy of Sciences). HIGH TEMPERATURE CYCLIC OXIDATION BEHAVIOR OF Fe-Cr-Al ALLOYS IN PURE SO_2 ATMOSPHERE[J]. 中国腐蚀与防护学报, 1994, 14(2): 106-112.
No Suggested Reading articles found!