Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 597-604    DOI: 10.11902/1005.4537.2021.186
Current Issue | Archive | Adv Search |
Preparation, Corrosion- and Wear-resistance of Polymethyl Methacrylate Coating Modified with Particles of Basalt/cerium Oxide Composite
LEI Yanhua(), LIU Ningxuan, ZHANG Yuliang, CHANG Xueting, LIU Tao
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Download:  HTML  PDF(12569KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A polymethyl methacrylate coating (PMMA) containing particles of basalt/cerium oxide composite was applied on X70 steel, then the effect of the addition amount of basalt/cerium oxide composite on the corrosion- and wear-resistance of the coating was studied. The synthesized basalt/cerium oxide composite material was characterized by X-ray diffractometer. The surface morphology, composition, hydrophilicity, and hydrophobicity of the coating before and after the addition of basalt/cerium oxide particles were assessed comparatively by scanning electron microscope with energy dispersive spectroscope and contact angle tester. At the same time, the anti-corrosion and friction behavior of the modified coating were studied by means of electrochemical impedance spectroscope, polarization curve measurement, friction- and wear-tester. The results show that the modified coating with basalt/cerium oxide composite exhibits much obvious hydrophobicity and better corrosion resistance and friction resistance.

Key words:  cerium oxide      basalt      polymethyl methacrylate      coating      anti-corrosion      friction and wear     
Received:  05 August 2021     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(516020195);National Natural Science Foundation of China(41976039)
Corresponding Authors:  LEI Yanhua     E-mail:  yhlei@shmtu.edu.cn
About author:  LEI Yanhua, E-mail: yhlei@shmtu.edu.cn

Cite this article: 

LEI Yanhua, LIU Ningxuan, ZHANG Yuliang, CHANG Xueting, LIU Tao. Preparation, Corrosion- and Wear-resistance of Polymethyl Methacrylate Coating Modified with Particles of Basalt/cerium Oxide Composite. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 597-604.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.186     OR     https://www.jcscp.org/EN/Y2022/V42/I4/597

Fig.1  SEM image of used basalt fine powders (a) and TEM image of CeO2 nanoparticles (b)
Fig.2  XRD patterns of basalt powders and BA/CeO2 particles
Fig.3  Water contact angles of various samples with PMMA, BA/CeO2/PMMA-0.06, BA/CeO2/PMMA-0.08, BA/CeO2/PMMA-0.1 and BA/CeO2/PMMA-0.12 coatings
Fig.4  SEM surface morphologies of various samples with PMMA (a), BA/CeO2/PMMA-0.06 (b), BA/CeO2/PMMA-0.08 (c), BA/CeO2/PMMA-0.1 (d), BA/CeO2/PMMA-0.12 coatings (e) and cross-sectional image of BA/CeO2/PMMA-0.1 coating (f)
Fig.5  EDS element mappings of the surfaces of BA/CeO2/PMMA-0.06 (a1, a2), BA/CeO2/PMMA-0.08 (b1, b2), BA/CeO2/PMMA-0.1 (c1, c2) and BA/CeO2/PMMA-0.12 (d1, d2) coatings
Fig.6  Nyquist (a) and Bode (b) diagrams of various samples with PMMA, BA/CeO2/PMMA-0.06, BA/CeO2/PMMA-0.08, BA/CeO2/PMMA-0.1 and BA/CeO2/PMMA-0.12 coatings in 3.5%NaCl solution
Fig.7  Equivalent circuit diagram of electrochemical impedance spectroscopy
SampleRs / Ω·cm2CPE2R2 / Ω·cm2CPE1R1 / Ω·cm2CPEdlRct / Ω·m2
Y0 / S·s n ·cm-2nY0 / S·s n ·cm-2nY0 / S·s n ·cm-2n
PMMA12.112.062×10-70.50814605.575×10-40.428132.191.091×10-30.74775291
BA/CeO2/PMMA-0.0613.974.246×10-80.9992793.81.136×10-60.794630331.093×10-40.512112121
BA/CeO2/PMMA-0.0813.371.894×10-80.998845711.472×10-70.887841214.188×10-50.589618788
BA/CeO2/PMMA-0.112.721.504×10-40.587310001.478×10-50.559550962.687×10-30.510827686
BA/CeO2./PMMA-0.1212.876.726×10-40.966310545.597×10-50.3835605.14.335×10-80.98976689
Table 1  Fitting results of electrochemical impedance spectroscopies of X70 steel samples with PMMA, BA/CeO2/PMMA-0.06, BA/CeO2/PMMA-0.08, BA/CeO2/PMMA-0.1 and BA/CeO2/PMMA-0.12 coatings in 3.5%NaCl solution
Fig.8  Polarization curves of X70 steel samples with PMMA, BA/CeO2/PMMA-0.06, BA/CeO2/PMMA-0.08, BA/CeO2/PMMA-0.1 and BA/CeO2/PMMA-0.12 coatings in 3.5%NaCl solution
SampleEcorr / VIcorr / µA·cm-2
PMMA-0.3256.92
BA/CeO2/PMMA-0.06-0.3944.47
BA/CeO2/PMMA-0.08-0.3382.34
BA/CeO2/PMMA-0.1-0.3271.57
BA/CeO2/PMMA-0.12-0.3675.89
Table 2  Fitting electrochemical parameters of polarization curves of X70 steel samples with different coatings in 3.5%NaCl solution
Fig.9  Variation of friction coefficient of coated X70 steel with the adding content of basalt / ceria particles in the coating
Fig.10  Wear scar profiles of X70 steel samples with the coatings of PMMA (a), BA/CeO2/PMMA-0.06 (b), BA/CeO2/PMMA-0.08 (c), BA/CeO2/PMMA-0.1 (d) and BA/CeO2/PMMA-0.12 (e)
1 Wang G F, Chen X, Gao F J, et al. Corrosion mechanism of X70 pipeline steel in different Cl- concentration [J]. Hot Work. Technol., 2015, 44(22): 34
王冠夫, 陈旭, 高凤姣 等. X70管线钢在不同浓度Cl-溶液中腐蚀机理研究 [J]. 热加工工艺, 2015, 44(22): 34
2 Li X. Effect of temperature on corrosion behavior of X70 pipeline steel in dry and wet cycling environment [D]. Fushun: Liaoning Petrochemical University, 2019
李雪. X70管线钢在不同温度海洋干湿交替环境中腐蚀行为研究 [D]. 抚顺: 辽宁石油化工大学, 2019
3 Du C H, Bai X Q. Research progress on corrosion and wear of typical metallic materials in Marine environment [J]. Lubr. Eng., 2021, 46(2): 121
杜琮昊, 白秀琴. 海洋环境下典型金属材料腐蚀与磨损研究进展 [J]. 润滑与密封, 2021, 46(2): 121
4 Annibaldi V, Rooney A D, Breslin C B. Corrosion protection of copper using polypyrrole electrosynthesised from a salicylate solution [J]. Corros. Sci., 2012, 59: 179
doi: 10.1016/j.corsci.2012.03.014
5 Bai F, Wang Z H, Wang G W, et al. A survey on development of anti-fouling materials [J]. Corros. Prot., 2014, 35: 420
柏芳, 王泽华, 王国伟 等. 防海生物污损材料研究现状 [J]. 腐蚀与防护, 2014, 35: 420
6 Liu Y Y. Study on the preparation and corrosioninhibition performance of cerium oxidebased coatings on 2024-T3 aluminum alloy deposited by magnetron sputtering [D]. Chongqing: Chongqing University, 2016
刘园园. 2024-T3铝合金表面磁控溅射沉积氧化铈基涂层的制备及耐腐蚀性能研究 [D]. 重庆: 重庆大学, 2016
7 Wang F L, Zheng Y S, Mo C Y, et al. Preparation and anticorrosive performance of polypyrrole/Nano-CeO2 composite [J]. China Plast. Ind., 2014, 42(12): 119
王发龙, 郑燕升, 莫春燕 等. 聚吡咯/纳米CeO2复合材料的制备及防腐性能研究 [J]. 塑料工业, 2014, 42(12): 119
8 Kumar A M, Babu R S, Ramakrishna S, et al. Electrochemical synthesis and surface protection of polypyrrole-CeO2 nanocomposite coatings on AA2024 alloy [J]. Synth. Met., 2017, 234: 18
doi: 10.1016/j.synthmet.2017.10.003
9 Ecco L G, Fedel M, Ahniyaz A, et al. Influence of polyaniline and cerium oxide nanoparticles on the corrosion protection properties of alkyd coating [J]. Prog. Org. Coat., 2014, 77: 2031
10 Xie J H, Shi Y F, Li J J, et al. Friction and wear properties of cerium oxide stabilized zirconia coating deposited by supersonic plasma spraying [J]. Mater. Prot., 2017, 50(7): 45
解璟昊, 史一凡, 李君健 等. 超音速等离子喷涂氧化铈稳定氧化锆涂层的摩擦磨损性能[J]. 材料保护, 2017, 50(7): 45
11 Zhang S, Zhang W J, Cui W D, et al. Microstructure and wear properties of Fe based alloy deposited on martensitic stainless steel with plasma surfacing [J]. J. Shenyang Univ. Technol., 2019, 41: 148
张松, 张文吉, 崔文东 等. 马氏体不锈钢等离子堆焊铁基合金组织及磨损性能 [J]. 沈阳工业大学学报, 2019, 41: 148
12 Lin J, Gao C H, Zheng K K, et al. Study on friction and wear properties of rare earth reinforced resin-based friction materials [J]. Lubr. Eng., 2018, 43(4): 53
林娇, 高诚辉, 郑开魁 等. 稀土增强树脂基摩擦材料的摩擦磨损性能研究 [J]. 润滑与密封, 2018, 43(4): 53
13 Liu B, Dai C W, Dong S C, et al. Performance analysis of basalt flakes and glass flakes [J]. Fiber Glass, 2020, (6): 35
刘波, 戴存武, 董世成 等. 玄武岩鳞片与玻璃鳞片的性能分析 [J]. 玻璃纤维, 2020, (6): 35
14 Cui X H, Zhang X C, Liu X D, et al. Application and development of basalt scales in anti-corrosive and anti-fouling coatings [J]. Mod. Paint Finish., 2018, 21(4): 25
崔向红, 张晓臣, 刘晓东 等. 玄武岩鳞片在防腐防污涂料中的应用及发展 [J]. 现代涂料与涂装, 2018, 21(4): 25
15 Zheng H P, Liu L, Meng F D, et al. Etched basalt scales wrapped in self-assembled poly (urea-formaldehyde) for robust anticorrosive coatings [J]. Prog. Org. Coat., 2021, 153: 106160
16 Xu X H, Zhang Z Z, Guo F, et al. Fabrication of superhydrophobic binary nanoparticles/PMMA composite coating with reversible switching of adhesion and anticorrosive property [J]. Appl. Surf. Sci., 2011, 257: 7054
doi: 10.1016/j.apsusc.2011.02.136
17 Zhang H B, Li X X, Sun J, et al. Preparation and properties of SiO2/PMMA inorganic-organic composites [J]. J. Nantong Univ. (Nat. Sci. Ed.), 2019, 18(4): 61
张海宝, 李潇潇, 孙俊 等. SiO2/PMMA无机-有机复合材料的制备与性能 [J]. 南通大学学报 (自然科学版), 2019, 18(4): 61
18 Zhao Z Q. Fabrication and study on properties of superhydrophobic coatings based on polymer matrices [D]. Daqing: Northeast Petroleum University, 2019
赵志强. 聚合物基超疏水涂层的制备与性能研究 [D]. 大庆: 东北石油大学, 2019
19 Yang Z J, Qiao C X, Gu Y Z, et al. Surface modification basalt and its solvent-free heavy anticorrosive composite coatings [J]. Compos. Mater. Eng., 2020, (4): 28
杨中甲, 乔彩霞, 顾轶卓 等. 表面改性玄武岩鳞片及其无溶剂重防腐复合材料涂层 [J]. 复合材料科学与工程, 2020, (4): 28
20 Fan B, Yu G, Qian M Y, et al. Preparation and application of hydrophobic weatherable anticorrosive coatings [J]. Coat. Prot., 2019, 40(7): 17
樊波, 余钢, 钱明阳 等. 疏水性耐候防腐涂料的制备及其应用 [J]. 涂层与防护, 2019, 40(7): 17
21 Eduok U, Jossou E, Tiamiyu A, et al. Ceria/acrylic polymer microgel composite: synthesis, characterization, and anticorrosion application for API 5L X70 substrate in chloride-enriched medium [J]. Ind. Eng. Chem. Res., 2017, 56: 5586
doi: 10.1021/acs.iecr.7b00714
22 Lu C, Mu S L, Du J, et al. Investigation on the composition and corrosion resistance of cerium-based conversion treatment by alkaline methods on aluminum alloy 6063 [J]. RSC Adv., 2020, 10: 36654
doi: 10.1039/D0RA07201J
23 Brug G J, van den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 176: 275
doi: 10.1016/S0022-0728(84)80324-1
24 Yoganandan G, Premkumar K P, Balaraju J N. Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy [J]. Surf. Coat. Technol., 2015, 270: 249
doi: 10.1016/j.surfcoat.2015.02.049
25 Yu X, Wu Q F, Chen R R, et al. Preparation and properties of basalt fiber reinforced epoxy composite coating [J]. J. Nat. Sci. Heilongjiang Univ., 2020, 37: 564
于湘, 吴沁芳, 陈蓉蓉 等. 玄武岩纤维增强环氧复合涂层的制备及性能研究 [J]. 黑龙江大学自然科学学报, 2020, 37: 564
[1] GE Chengyue, LUO Xiangping, WANG Jing, DUAN Jizhou, WANG Ning, HOU Baorong. Properties of KH550 and Hydroxyl Silicone Oil Co-modified Epoxy Resin and Its Mg-rich Primer[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[2] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[3] ZHANG Zhengyang, GUO Zixin, ZHOU Xin, SUN Haijing, SUN Jie. Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[4] TIAN Weiping, GUO Liangshuai, WANG Yuhang, ZHOU Peng, ZHANG Tao. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[5] LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing, MENG Guozhe. Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[6] LIU Xuanxuan, YU Jinshan, GAO Yan, ZHAO Peng, WANG Qiwei, DU Zhuoling, ZHANG Junxi. Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[7] WANG Yongxin, WANG Yixuan, CHEN Chunlin, LI Xiang, HE Nankai, LI Jinlong. Preparation of Zr/[Al(Si)N/CrN] Coatings of Stratified Structure and Their Corrosion-wear Performance in Artificial Seawater[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[8] YANG Yange, CAO Jingyi, WANG Xingqi, FANG Zhigang, YU Hongfei, YU Baoxing, WANG Fuhui. Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[9] SUN Xiaoguang, WANG Rui, ZHANG Zhiyi, HAN Xiaohui, LI Gangqing. On-line Corrosion Monitoring Technology for High-speed Train in Dynamic Service Circumstance[J]. 中国腐蚀与防护学报, 2022, 42(3): 441-446.
[10] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[11] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[12] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[13] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[14] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[15] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
No Suggested Reading articles found!