Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 653-658    DOI: 10.11902/1005.4537.2020.252
Current Issue | Archive | Adv Search |
Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5%NaCl Solution
JI Kaiqiang1, LI Guangfu1(), ZHAO Liang2
1.Shanghai Key Lab of Engineering Materials Application and Evaluation,Shanghai Research Institute of Materials, Shanghai 200437, China
2.China National Nuclear Power Operation Management Co. Ltd. , Haiyan 314300, China
Download:  HTML  PDF(1637KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting corrosion behavior of stainless steels 304L and 316L, as the structural material used for heavy water collection tubing of nuclear power plant, in simulated primary solution of heavy water reactor and 3.5%NaCl solution at 30 and 60 ℃ was studied by means of electrochemical methods, such as measurements of pitting potential, anodic polarization curve and critical pitting temperature (CPT) etc. The effect of temperature, solution- and material-parameters on the corrosion behavior of the two steels was comparatively examined. The results showed that the pitting potential and CPT of the two steels in the simulated solution were higher than that in 3.5%NaCl solution, and the pitting sensitivity of the steels in the simulated solutions increased with the increase of chloride ion concentration. It was found that the pitting potential and CPT of 316L stainless steel were higher than those of 304L stainless steel in the same environment, thus 316L stainless steel had better pitting resistance. When the test temperature was increased from 30 ℃ to 60 ℃, the pitting sensitivity of the steels in both solutions increased significantly. According to the test results, the methods related with the prevention from corrosion failures in engineering practice are discussed.

Key words:  heavy water reactor      primary circuit      stainless steel      pitting     
Received:  04 December 2020     
ZTFLH:  TG174  
Corresponding Authors:  LI Guangfu     E-mail:  guangfuli8298@vip.sina.com
About author:  LI Guangfu, E-mail: guangfuli8298@vip.sina.com

Cite this article: 

JI Kaiqiang, LI Guangfu, ZHAO Liang. Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 653-658.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.252     OR     https://www.jcscp.org/EN/Y2021/V41/I5/653

MaterialCSiMnSPCrNiMoFe
316L stainless steel0.0210.411.550.0070.02516.7612.332.05Bal.
304L stainless steel0.0150.561.540.0180.01618.2910.16---Bal.
Table 1  Chemical compositions of the test materials (mass fraction / %)
Fig.1  Anodic polarization curves of 304L (a, b) and 316L stainless steel (c, d) at 30 and 60 ℃ in 3.5%NaCl solution (a, c) and simulated solution (b, d)
ParameterEb10(E¯b10)Eb100(E¯b100)Ep(E¯p)
30 ℃60 ℃30 ℃60 ℃30 ℃60 ℃
304L stainless steel simulated677, 665, 666 (669)523, 427, 537 (495)756,714,766 (745)603,546,628 (592)------
304L stainless steel 3.5%NaCl256, 287, 226 (256)88, 113, 100 (100)259,289,268 (272)92,114,102 (102)------
316L stainless steel simulated684, 728, 752 (721)568, 615, 564 (582)757,796,859 (804)647,665,612 (641)82, 143, -8 (73)-105, -28, 45 (-29)
316L stainless steel 3.5%NaCl340, 355, 303 (332)174, 174, 96 (148)363,382,349 (364)175,176,106 (152)50, 60, 36 (48)-89, -114, -71 (-91)
Table 2  Pitting test results of two materials at 30 and 60 ℃ in simulated solution and 3.5%NaCl solution
MaterialSolutionCPT / ℃平均值
304L stainless steelSimulated3232.5
33
3.5%NaCl≤3≤3
≤3
316L stainless steelSimulated4746
45
3.5%NaCl78.5
10
Table 3  CPT test results of two stainless steels
Fig.2  CPT test results of two stainless steels in 3.5%NaCl solution and simulated solution
Fig.3  Pitting appearance of 304L (a, b) and 316L (c, d) stainless steels in 3.5%NaCl solution (a, c) and simulated solution (b, d)
1 da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40: 447
2 Anoop M B, Rao K B, Lakshmanan N. Safety assessment of austenitic steel nuclear power plant pipelines against stress corrosion cracking in the presence of hybrid uncertainties [J]. Int. J. Pres. Ves. Pip., 2008, 85: 238
3 Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces [J]. J. Nucl. Mater., 2006, 348: 191
4 Wei B M. Metal Corrosion Theory and Application [M]. Beijing: Chemical Industry Press, 1984
魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1984
5 Cao C N. Corrosion Electrochemical Principles (3rd Edi.) [M]. Beijing: Chemical Industry Press., 2008
曹楚南. 腐蚀电化学原理(第三版) [M]. 北京: 化学工业出版社, 2008
6 Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25
7 Xu Y C, Liu T Y. Research progress of corrosion protection technology for oil and natural gas pipeline [J]. Chem. Enterp. Manag., 2014, (33): 76
俆跃忱, 刘同友. 管道石油天然气腐蚀防护的相关技术研究进展 [J]. 化工管理, 2014, (33): 76
8 He R Y, Tang X, Zhao X, et al. Research progress of corrosion protection technology for oil and natural gas pipeline [J]. Proc. Equip. Pip., 2013, (1): 53
何仁洋, 唐鑫, 赵雄等. 管道石油天然气腐蚀防护的相关技术研究进展 [J]. 化工设备与管道, 2013, (1): 53
9 Wu T. Corrosion protection techniques in oil and gas collection and transportation pipelines [J]. Oil-Gasfield Surf. Eng., 2014, (4): 85
吴涛. 油气集输管道内腐蚀防护技术 [J]. 油气田地面工程, 2014, (4): 85
10 Gu C X, Ji G J, Zhu G J, et al. Ship corrosion and anti-corrosion measures [J]. Ship Eng., 2010, 32(3): 1
顾彩香, 吉桂军, 朱冠军等. 船舶的腐蚀与防腐措施 [J]. 船舶工程, 2010, 32(3): 1
11 Gu S C, Zhang Y M. Qinshan Phase III CANDU6 heavy water reactor nuclear power plant [J]. Energy Res. Inform., 1996, (4): 43
顾树川, 张园茗. 秦山三期CANDU6型重水堆核电站 [J]. 能源研究与信息, 1996, (4): 43
12 Li G F, Zhao L, Yang X H, et al. Stress corrosion cracking behaviors of corrosion-resistant materials for heavy-water collection system in high temperature solution and vapor environments and their significance for industry [A]. The 4th International Symposium on Materials and Reliability in Nuclear Power Plant [C]. Shenyang, 2015: 126
李光福, 赵亮, 杨兴红等. 重水回收系统用耐蚀材料在高温水及蒸汽环境中的应力腐蚀破裂行为及工程意义 [A]. 第四届核电站材料与可靠性国际研讨会 [C]. 沈阳, 2015: 126
13 Li R, Jin Y T, Hu J, et al. Electrochemical behavior of corrosion at normal temperature of three typical metals in coast nuclear power plants [J]. Corros. Prot., 2016, 37: 730
李润, 金玉婷, 胡俊等. 沿海核电站三种典型金属材料的常温腐蚀电化学行为 [J]. 腐蚀与防护, 2016, 37: 730
14 Wang J M, Arjmand F, Du D H, et al. Electrochemical corrosion behaviors of 316 L stainless steel used in PWR primary pipes [J]. Chin. J. Eng., 2017, 39: 1355
汪家梅, Arjmand F, 杜东海等. 压水堆一回路主管道316L不锈钢的电化学腐蚀行为 [J]. 工程科学学报, 2017, 39: 1355
15 Li Y, Fang K W, Liu F H. Influence of Cl- on development behavior from pitting corrosion to stress corrosion cracking of 304L stainless steel [J]. Corros. Prot., 2012, 33: 955
李岩, 方可伟, 刘飞华. Cl-对304L不锈钢从点蚀到应力腐蚀转变行为的影响 [J]. 腐蚀与防护, 2012, 33: 955
16 Wu W W, Jiang Y M, Liao J X, et al. Influence of Cl- on critical pitting temperature for 304 and 316 stainless steels [J]. Corros. Sci. Prot. Technol., 2007, 19: 16
吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响 [J]. 腐蚀科学与防护技术, 2007, 19: 16
17 Chen X J, Wang H L, Chen Z J. Mechanism of molybdate for inhibition of pitting corrosion of stainless steel [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 213
陈旭俊, 王海林, 陈振家. 钼酸盐对不锈钢孔蚀抑制作用机理的研究 [J]. 中国腐蚀与防护学报, 1992, 12: 213
18 Hua H Z, Zhao G Z, Li L X, et al. An XPS study of passive film and its breakdown on ferritic stainiess steel in Cl--containing neutral solution [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 233
华惠中, 赵国珍, 李丽霞等. Fe-Cr-Mo系铁素体不锈钢在中性氯离子介质中钝化膜及其破坏的XPS研究 [J]. 中国腐蚀与防护学报, 1987, 7: 233
19 Yang W, Pourbaix A. Effect of chromium and molybdenum on the propagation of localized corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 1983, 3: 22
杨武, Pourbaix A. 铬和钼对钢的局部腐蚀发展过程的影响 [J]. 中国腐蚀与防护学报, 1983, 3: 22
20 Yang W, Hua H Z. Study on experimental potential - pH diagram of Fe-Cr-Mo ferrite stainless steel in chloride medium [J]. J. Chin. Soc. Corros. Prot., 1984, 4: 243
杨武, 华惠中. Fe-Cr-Mo系铁素体不锈钢在氯化物介质中的实验电位-pH图研究 [J]. 中国腐蚀与防护学报, 1984, 4: 243
21 Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
22 Li G M, Guo X P, Zheng J S. Pitting corrosion behavior of stainless steel 304 in carbon dioxide environments [J]. J. Iron Steel Res. Int., 2004, 11: 47
23 Yang R C, Bi H J, Niu S R, et al. Influence of temperature and mass fraction of Cl- on pitting corrosion resistance of 304 stainless steel [J]. J. Lanzhou Univ. Technol., 2010, 36(5): 5
杨瑞成, 毕海娟, 牛绍蕊等. 温度和Cl-质量分数对304不锈钢耐点蚀性能的影响 [J]. 兰州理工大学学报, 2010, 36(5): 5
[1] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[2] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[3] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[4] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[5] CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[6] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[7] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[8] JIAO Yang, ZHANG Shenghan, TAN Yu. Research Progress on Stress Corrosion Cracking of Stainless Steel for Nuclear Power Plant in High-temperature and High-pressure Water[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[9] YANG Zhongkui, SHI Yanhua, QIAO Zhongli, LIANG Ping, WANG Ling. Effect of ClO2- on Pitting Initiation of S2205 Stainless Steel in Cl- Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
[10] ZHAN Dongdong, WANG Cheng, QIAN Jiyu, WANG Wen, ZHOU Tong, ZHU Shenglong, WANG Fuhui. Effect of Trace Cl- and Cu2+ Ions on Corrosion Behavior of 3A21 Al-alloy in Ethylene Glycol Coolant[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[11] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[12] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[13] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[14] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[15] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
No Suggested Reading articles found!