Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 120-126    DOI: 10.11902/1005.4537.2020.276
Current Issue | Archive | Adv Search |
Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact
WANG Yongxiang, HE Bolin(), LI Li
School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
Download:  HTML  PDF(6192KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of ultrasonic impact on corrosion fatigue properties of P355NL1 steel welded joints was studied, while the surface morphology and the fractured surface were characterized by optical microscope and scanning electron microscope. Meanwhile, the electrochemical corrosion rate of the weld joints before and after ultrasonic impact was comparatively examined by electrochemical workstation. The results show that the fatigue strength of the welded joint in the as welded state decreases by 12.5% in 6% (mass fraction) NaCl corrosion solution in comparison with that of the substrate. In 6%NaCl solution and water, the fatigue strength of the ultrasonic impacted welded joints is increased by 75% and 53%, and the slope of S-N curve is changed by 75.4% and 60.4%, respectively, in comparison with that in the welded state. The maximum depth of the plastic deformation layer is about 350 μm. The fatigue life of the welded joints is significantly improved by the ultrasonic impact, correspondingly, the fatigue fracture location is also transferred from the weld toe to the weld or base metal area, and the number of corrosion pits is significantly reduced. The results clearly show that the ultrasonic impact can refine grain, reduce stress concentration, eliminate harmful residual tensile stress, introduce beneficial residual compressive stress, reduce electrochemical corrosion rate, and improve the corrosion fatigue performance of welded joints of P355NL1 steel.

Key words:  ultrasonic impact      welded joint      fatigue      corrosion     
Received:  26 December 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51365014);Key Industrial Support Project of Jiangxi Province(2016BBE50072)
Corresponding Authors:  HE Bolin     E-mail:  hebolin@163.com
About author:  HE Bolin, E-mail:hebolin@163.com

Cite this article: 

WANG Yongxiang, HE Bolin, LI Li. Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 120-126.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.276     OR     https://www.jcscp.org/EN/Y2022/V42/I1/120

Fig.1  Fatigue test specimen of P355NL1 steel welded joint
Sample numberStress rangeCycle timesFracture location
12258.00×105Weld toe
22153.50×106Weld toe
32052.69×106Weld toe
41954.88×106Weld toe
51851.63×107Weld toe
61755.83×106Weld toe
71651.80×107Weld toe
81552.25×107Weld toe
91453.12×107Weld toe
101406.12×107Weld toe
111351.59×108Weld toe
121304.40×108Weld toe
131201.00×109Not broken
Table 1  Fatigue lifes of joint specimens in water medium
Sample numberStress rangeCycle timesFracture location
12156.00×105Weld toe
22101.60×106Weld toe
32003.00×106Weld toe
41904.12×106Weld toe
51801.30×106Weld toe
61701.62×107Weld toe
71601.80×107Weld toe
81502.16×107Weld toe
91402.76×107Weld toe
101307.20×107Weld toe
111202.08×108Weld toe
121155.00×108Weld toe
131101.00×109Not broken
Table 2  Fatigue lifes of joint specimens in 6%NaClmedium
Sample numberStress rangeCycle timesFracture location
13101.08×106Soldering seam
23001.50×106Soldering seam
32903.40×106Soldering seam
42805.04×106Base metal
52706.33×106Soldering seam
62609.20×106Base metal
72501.03×107Base metal
82402.40×107Soldering seam
92304.30×107Soldering seam
102201.20×108Soldering seam
112155.46×108Soldering seam
122101.00×109Not broken
132101.00×109Not broken
Table 3  Fatigue lifes of ultrasonic impact treated specimens in 6%NaCl medium
Fig.2  S-N curves of three fatigue specimens
SampleEVE¯VImA·cm-2I¯mA·cm-2Vmm·a-1V¯mm·a-1
UIT-1.059-1.0620.03560.03740.45220.4424
-1.0650.03870.4397
-1.0620.03790.4352
As welded-1.044-1.0490.04190.04250.49350.5028
-1.0520.04300.5163
-1.0470.04260.4986
Table 4  Electrochemical corrosion data of as-welded and ultrasonic impact treated specimens
Fig.3  Polarization curves of welded joints with and without ultrasonic impact treatment in 6%NaCl solution
Fig.4  Microstructures of plastic deformation layer formed by ultrasonic impact: (a) whole layer, (b) upper layer, (c) lower layer
Fig.5  Fracture morphologies of welded joint of P355NL1 steel after fatigue test: (a, b) fatigue crack source, (c) crack propagation zone, (d) final fracture zone
Fig.6  Fatigue fracture morphologies of welded joint with ultrasonic impact treatment: (a, b) fatigue crack source; (c) crack propagation zone; (d) final fracture zone
1 Yang J Y, Wang X L, Sun H Y, et al. Research on material development and application of EMU bogie frame [J]. Found. Technol., 2020, 41: 736
杨集友, 王显亮, 孙浩晏等. 动车组转向架构架材料的研发及应用 [J]. 铸造技术, 2020, 41: 736
2 Wang W J, Hui X L, Ma J J. Fatigue crack mechanism research on high speed train equipment cabin frame [J]. J. Mech. Eng., 2015, 51(6): 142
王文静, 惠晓龙, 马纪军. 高速列车设备舱支架疲劳裂纹机理研究 [J]. 机械工程学报, 2015, 51(6): 142
3 Zhang Y Y, Sun S G, Yang G X, et al. Load characteristics and fatigue damage assessment of high speed train bogie frame [J]. J. Mech. Eng., 2020, 56(10): 163
张亚禹, 孙守光, 杨广雪等. 高速列车转向架构架载荷特征及疲劳损伤评估 [J]. 机械工程学报, 2020, 56(10): 163
4 Shahani A R, Shakeri I. Experimental evaluation of fatigue behaviour of thin Al5456 welded joints [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 965
5 Jacob A, Mehmanparast A, D'Urzo R, et al. Experimental and numerical investigation of residual stress effects on fatigue crack growth behaviour of S355 steel weldments [J]. Int. J. Fatigue, 2019, 128: 105196
6 Zhang Z G, Zhou Z Y, Liu C Y. Corrosion fatigue fracture failure analysis of high-strength aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 48
张正贵, 周兆元, 刘长勇. 高强度铝合金构件腐蚀疲劳失效分析 [J]. 中国腐蚀与防护学报, 2008, 28: 48
7 Li D D, Zheng Y, Chu M J, et al. Research progress of ultrasonic impact treatment technology for welding structures [J]. Mater. Prot., 2019, 52(11): 139
李东东, 郑云, 初明进等. 超声冲击强化技术处理焊接结构的研究进展 [J]. 材料保护, 2019, 52(11): 139
8 Chen G R, Gong B M, Meng Q Y, et al. Fatigue assessment of welded joint improved by ultrasonic impact treatment [J]. Trans. China Weld. Inst., 2019, 40(8): 118
陈广冉, 龚宝明, 孟庆禹等. 超声冲击态焊接接头疲劳性能分析 [J]. 焊接学报, 2019, 40(8): 118
9 He B L, Feng Y M, Li L. Effects of UIT and weld reinforcement on fatigue properties of 6082 aluminum alloy welded joint [J]. Chin. J. Nonferrous Met., 2019, 29: 1377
何柏林, 封亚明, 李力. 超声冲击及焊缝余高对6082铝合金焊接接头疲劳性能的影响 [J]. 中国有色金属学报, 2019, 29: 1377
10 Wang D P, Huo L X, Zhang Y F. Influence of undercuts on fatigue property of welded joints by TIG dressing treatment [J]. J. Tianjin Univ., 2004, 37: 570
王东坡, 霍立兴, 张玉凤. TIG熔修法改善含咬边缺陷焊接接头疲劳性能 [J]. 天津大学学报, 2004, 37: 570
11 Govindaraj R, Sudhakaran R, Eazhil K M, et al. Influence of high-frequency mechanical peening on the fatigue life of stainless steel joints in corrosive environment [J]. Trans. Indian Inst. Met., 2019, 72: 3233
12 Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment [J]. Mater. Lett., 2015, 139: 462
13 Singh V, Marya M, Roy I, et al. Surface property enhancement of UNS N07718 and G41400 by ultrasonic impact treatment [J]. Mater. Sci. Forum, 2014, 783-786: 2863
14 Zhang D H. Effect of ultrasonic impact treatment on corrosion fatigue behavior of A106-B steel welded pipes [J]. Mater. Sci. Eng. Powder Metall., 2019, 24: 267
张德红. 超声冲击处理对A106-B焊管腐蚀疲劳的影响 [J]. 粉末冶金材料科学与工程, 2019, 24: 267
15 Deng L, Yan W C, Nie L. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect [J]. Eng. Struct., 2019, 178: 309
16 Wang Y, Zheng Y Q. Research on corrosion fatigue performance and multiple fatigue sources fracture process of corroded steel wires [J]. Adv. Civil Eng., 2019, 2019: 1
17 Wolf M, Pfennig A. Failure of standard duplex stainless steel X2CrNiMoN22-5-3 under corrosion fatigue in geothermal environment [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 894: 012015
18 Petrov Y N, Prokopenko G I, Mordyuk B N, et al. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy [J]. Mater. Sci. Eng., 2016, 58C: 1024
19 Liu J, Du Y C, Miao G M, et al. Effect of ultrasonic impact on welding fatigue life and stress corrosion resistance of 7N01P-T4 aluminum alloy welded joint [J]. Hot Work. Technol., 2020, 49(23): 19
刘军, 杜亦璨, 苗国民等. 超声冲击对7N01P-T4铝合金焊接接头疲劳寿命及应力腐蚀性能的影响 [J]. 热加工工艺, 2020, 49(23): 19
20 He B L, Xie X T, Ding J H, et al. Mechanism of improving Ultra-high cycle fatigue properties of MB8 magnesium alloy welded joint by ultrasonic impact treatment [J]. Rare Met. Mater. Eng., 2019, 48: 650
何柏林, 谢学涛, 丁江灏等. 超声冲击改善MB8镁合金焊接接头超高周疲劳性能的机理 [J]. 稀有金属材料与工程, 2019, 48: 650
21 Yue L L, Ma B J. Effect of ultrasonic surface rolling process on corrosion behavior of AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 560
岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 560
22 Ma Y H. Effect of shot peening on oxidation resistance of super 304H steel in supercritical steam [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 245
马云海. 喷丸处理对Super304H钢抗蒸汽氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 245
23 Wang D P, Gong B M, Wu S P, et al. Research review on fatigue life improvement of welding joint and structure [J]. J. East China Jiaotong Univ., 2016, 33(6): 1
王东坡, 龚宝明, 吴世品等. 焊接接头与结构疲劳延寿技术研究进展综述 [J]. 华东交通大学学报, 2016, 33(6): 1
24 Jin C J, Chen B Q, Li W, et al. Effect of laser shock peening on corrosion resistance of AISI430 ferritic stainless steel [J]. Laser Technol., 2020, 44: 212
金成嘉, 陈炳泉, 李纬等. 激光冲击对AISI430铁素体不锈钢抗蚀性影响 [J]. 激光技术, 2020, 44: 212
25 Liu J. Effect of surface nanocrystallization on corrosion resistance of Nickel-based alloy 690 [D]. Nanchang: Jiangxi University of Science and Technology, 2020
刘江. 表面纳米化对镍基690合金抗腐蚀性能的影响 [D]. 南昌: 江西理工大学, 2020
[1] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[3] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[4] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[5] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[6] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[7] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[8] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[9] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[10] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[11] LIU Dong, LIU Jing, HUANG Feng, DU Liying, PENG Wenjie. Corrosion Fatigue Crack Growth Prediction Model Based on Stress Ratio and Threshold for Marine Engineering Steel DH36Z35 in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[12] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[13] CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[14] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[15] HU Huihui, CHEN Changfeng. Mechanism of Temperature Influence on Adsorption of Schiff Base[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
No Suggested Reading articles found!