Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 542-548    DOI: 10.11902/1005.4537.2020.124
Current Issue | Archive | Adv Search |
Performance of Two New Surfactants as Acidizing Inhibitors for Oil and Gas Fields
WANG Dingli1, LI Yongming1(), JIANG Liming2, CHEN Bo1, LUO Ang1
1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2.Heavy Oil Development Company, Xinjiang Oilfield Company, Karamay 834000, China
Download:  HTML  PDF(7862KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In view of the high toxicity and high cost of the current corrosion inhibitors, a new type of surfactant corrosion inhibitor was synthesized using two green raw materials of erucic acid and oleic acid, and the performance of the two corrosion inhibitors for P110 steel in 15% (mass fraction) hydrochloric acid solution were assessed by means of mass loss measurement, electrochemical measurement, Scanning Kelvin probe (SKP) and scanning electron microscope (SEM). Results show that the two corrosion inhibitors have good corrosion inhibition effects at 90 ℃ and can be used as effective corrosion inhibitors for oil and gas field acidification. In comparison with the P110 steel tested in the blank 15%HCl solution, the surface morphology of the same steel tested in the 15%HCl solution with addition of the two corrosion inhibitors maintained a better state, indicating that the two corrosion inhibitors had a good effect. Finally, through quantum chemical calculation, the synthetic corrosion inhibitor has been proved to be effective from the perspective of molecular calculation, and the correlation between experimental and theoretical results has also been demonstrated.

Key words:  inhibitor      electrochemical      surfactant      acid solution     
Received:  17 July 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(U19A2043)
Corresponding Authors:  LI Yongming     E-mail:  swpifrac@163.com
About author:  LI Yongming, E-mail: swpifrac@163.com

Cite this article: 

WANG Dingli, LI Yongming, JIANG Liming, CHEN Bo, LUO Ang. Performance of Two New Surfactants as Acidizing Inhibitors for Oil and Gas Fields. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 542-548.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.124     OR     https://www.jcscp.org/EN/Y2021/V41/I4/542

Fig.1  Surfactant synthesis route
Cmmol/LDEERDEOD
v / g·m-2·h-1η / %v / g·m-2·h-1η / %
Blank825.525---825.525---
12154.72381.26168.75779.56
14104.19987.38113.58486.24
1657.21093.0781.34090.15
1814.12898.2937.96795.40
207.99899.0310.96498.67
Table 1  Mass loss experimental results of DEER and DEOD inhibitors
Fig.2  Potentiodynamic polarization curves of DEER inhibitor (a) and DEOD inhibitor (b)
InhibitorC mmol/LEcorrVSCEIcorrmA·cm-2βamV·dec-1βc mV·dec-1η%
DEERBlank-0.4061.46176.04-175.2---
12-0.3740.10791.04-163.692.7
14-0.3890.08691.91-166.594.1
16-0.3790.04992.22-173.296.7
18-0.3730.02884.15-163.698.1
20-0.3840.02185.12-174.398.6
DEODBlank-0.4061.46176.04-175.2---
12-0.3450.12785.11-195.891.3
14-0.3570.09693.22-180.693.4
16-0.3480.07797.15-191.994.7
18-0.3540.04198.10-194.197.2
20-0.3590.03294.16-187.797.8
Table 2  Fitting results of potentiodynamic polarization curves of DEER and DEOD inhibitor
Fig.3  Nyquist plots for mild steel tested in 15%HCl solution in DEER inhibitor (a) and DEOD inhibitor (b)
Fig.4  Frequency (a, b) and phase angle (c, d) test results in DEER inhibitor (a, c) and DEOD inhibitor (b, d)
Fig.5  Equivalent circuit for inhibitors in 15%HCl solution
InhibitorC / mmol/LRs / Ω·cm2CPE1Rpore / Ω·cm2CPE2Rct / Ω·cm2η / %
Y01 / Ω-1·sn·cm-2nY02 / Ω-1·sn·cm-2n
DEERBlank0.5967.10.787.9269.70.6211.4---
121.0715.40.868.3190.10.69152.288.0
141.215.80.887.1171.20.72202.690.8
161.018.30.8812.1142.60.71212.891.4
180.9310.50.8922.483s.90.67265.893.3
201.110.10.8725.566.50.69340.394.7
DEODBlank0.5967.10.787.9269.70.6211.4---
120.6716.60.899.4126.80.59190.690.3
140.7410.70.879.9116.80.62207.591.1
160.808.90.9018.7107.40.67238.292.5
180.897.50.8822.613.70.69246.692.8
200.988.40.8929.578.30.62263.293.4
Table 3  Fitting results of EIS parameters
Fig.6  Potential distribution images of specimens before and after immersion in 15%HCl solution: (a) before immersion; (b) after absence inhibitor; (c) after presence the DEER; (d) after presence the DEOD
Fig.7  SEM images of mild steel specimens before and after immersion in 15%HCl solution: (a) before immersion; (b) after immersion in uninhibited solution; (c) after immersion with DEER; (d) after immersion with DEOD
Fig.8  Optimal structures, the distributions of molecular orbital for two surfactants DEER (a) and DEOD (b)
InhibotorEHOMOELUMOΔEeVμDXeVγeVΔN
DEER-7.1384-2.84604.292438.67974.99222.14620.4678
DEOD-7.2859-2.89774.388233.48505.09182.19410.4348
Table 4  Quantum chemical calculation results
1 Haruna K, Obot I B, Ankah N K, et al. Gelatin: a green corrosion inhibitor for carbon steel in oil well acidizing environment [J]. J. Mol. Liq., 2018, 246: 515
2 Ituen E B, Akaranta O, Umoren S A. N-acetyl cysteine based corrosion inhibitor formulations for steel protection in 15%HCl solution [J]. J. Mol. Liq., 2017, 246: 112
3 Li Y L, Liu Y, Yan C, et al. Application of corrosion inhibitors in the development of oil and gas fields [J]. Contemp. Chem. Ind., 2019, 48: 147
李耀龙, 刘云, 鄢晨等. 油气田开发过程中的缓蚀剂应用 [J]. 当代化工, 2019, 48: 147
4 Li C N. Research progress of oil acidizing corrosion inhibitor [J]. Surf. Technol., 2016, 45(8): 80
李丛妮. 油田酸化缓蚀剂的研究进展 [J]. 表面技术, 2016, 45(8): 80
5 Lv Y Y, Wang Y. Research progress of corrosion inhibitor in China [J]. Pet. Tubular Goods Instrum., 2015, 1(4): 5
吕依依, 王远. 油气田用缓蚀剂研发进展 [J]. 石油管材与仪器, 2015, 1(4): 5
6 Zhou S J, Guo X H, Du S Z, et al. Development and research progress of acidizing corrosion inhibitor for oil well [J]. Corros. Sci. Prot. Technol., 2014, 26: 469
周生杰, 郭学辉, 杜素珍等. 油井酸化缓蚀剂的开发研究进展 [J]. 腐蚀科学与防护技术, 2014, 26: 469
7 Ituen E, Mkpenie V, Ekemini E. Corrosion inhibition of X80 steel in simulated acid wash solution using glutathione and its blends: Experimental and theoretical studies [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019, 578: 123597
8 Wang X M, Yang H Y, Wang F H. A cationic Gemini-surfactant as effective inhibitor for mild steel in HCl solutions [J]. Corros. Sci., 2010, 52: 1268
9 Li J B, Zhang L M, Hu Z H, et al. Applied research of Mannich reaction in synthesis of acidifying corrosion inhibitor [J]. Fine Spec. Chem., 2014, 22(7): 11
李建波, 张莉梅, 胡正海等. Mannich反应在酸化缓蚀剂合成中的应用 [J]. 精细与专用化学品, 2014, 22(7): 11
10 Zhang J T, Li Q D, Zhao J. Research progress of acidizing corrosion inhibitors in oil/gas well [J]. Corros. Prot., 2014, 35(6): 593
张娟涛, 李谦定, 赵俊. 油气井酸化缓蚀剂研究进展 [J]. 腐蚀与防护, 2014, 35(6): 593
11 Lu Y B. P110Steel high-temperature hydrochloric acid inhibitor: Synthesis, performance evaluation and mechanism [D]. Xi'an: Xi'an Shiyou University, 2012
卢永斌. P110钢高温盐酸酸化缓蚀剂研究 [D]. 西安: 西安石油大学, 2012
12 Ayukayeva V N, Boiko G I, Lyubchenko N P, et al. Polyoxyethylene sorbitan trioleate surfactant as an effective corrosion inhibitor for carbon steel protection [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019, 579: 123636
13 Hegazy M A, Abdallah M, Ahmed H. Novel cationic Gemini surfactants as corrosion inhibitors for carbon steel pipelines [J]. Corros. Sci., 2010, 52: 2897
14 Long F Y, Yang Y, Wang S L, et al. Microregion electrochemical measurement technology and its application in corrosion [J]. Corros. Sci. Prot. Technol., 2015, 27: 194
龙凤仪, 杨燕, 王树立等. 微区电化学测量技术及其在腐蚀中的应用 [J]. 腐蚀科学与防护技术, 2015, 27: 194
15 Pakiet M, Kowalczyk I, Garcia R L, et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel [J]. Bioelectrochemistry, 2019, 128: 252
16 Pakiet M, Tedim J, Kowalczyk I, et al. Functionalised novel Gemini surfactants as corrosion inhibitors for mild steel in 50 mM NaCl: Experimental and theoretical insights [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019, 580: 123699
17 Li Q D, Wang J G, Yu H J, et al. A novel highly-efficient acidizing corrosion inhibitor used for oil and gas wells [J]. Nat. Gas Ind., 2008, 28(2): 96
李谦定, 王京光, 于洪江等. 一种新型高效油气井酸化缓蚀剂的研制 [J]. 天然气工业, 2008, 28(2): 96
18 Qiu H Y, Li J B. The present situation and expectation of acidizing corrosion inhibitors [J]. Corros. Sci. Prot. Technol., 2005, 17: 255
邱海燕, 李建波. 酸化缓蚀剂的发展现状及展望 [J]. 腐蚀科学与防护技术, 2005, 17: 255
19 El-Tabei A S, Hegazy M A. Synthesis and characterization of a novel nonionic Gemini surfactant as corrosion inhibitor for carbon steel in acidic solution [J]. Chem. Eng. Commun., 2015, 202: 851
[1] CUI Haoran, LIANG Ping, SHI Yanhua, YANG Zhongkui, HAN Li. Effect of Denitration Agent Concentration on Corrosion Resistance and Critical Pitting Temperature of S2205 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[2] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[3] TAN Bochuan, ZHANG Shengtao, LI Wenpo, XIANG Bin, QIANG Yujie. Food Spices 2,5-Dihydroxy-1,4-dithiane as an Eco-friendly Corrosion Inhibitor for X70 Steel in 0.5 mol/L H2SO4 Solution[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[4] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[5] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[6] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[7] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[8] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[9] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[10] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[11] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[12] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[13] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[14] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[15] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
No Suggested Reading articles found!