Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 81-86    DOI: 10.11902/1005.4537.2016.217
研究报告 Current Issue | Archive | Adv Search |
Influence of Surface-active Agent PFOA Molecular Film on Rust Removal and Corrosion Behavior of Rusty Carbon Steel
Yinze ZUO1, Baohua XU2, Guisheng ZHU2, Cheng HUANG2, Qing FENG1, Liang CHEN1, Zhaolei LI1, Yanmin GAO1()
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Jiangsu SOPO Company, SOPO Co., Ltd., Zhenjiang 212006, China
Download:  HTML  PDF(2582KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High surface-active ammonium perfluorooctanoic acid (PFOA) was selected as a surface treatment agent, and the influence of the concentration of PFOA on the rust removal effect for the rust scale and the corrosion behavior of the cleaned Q235 steel was investigated. The rust Q235 steel samples were derust in solutions with 1, 10, 100, 150 and 200 g/L PFOA respectively, and which then were characterized by means of contact angle measurement, electrochemical polarization curve measurement, and electrochemical impedance spectroscopy and SEM with EDS . Results show that PFOA solution has great speadability and wettability for the surface of rust steel and can penetrate the porous rust scale to the substrate surface to form adsorption film, which can weaken and even destroy the bonding between the rust and the substrate, thereby the rust can easy spall off. Among others the solution with 150 g/L PFOA presented the best derusting efficiency, i.e. the rust scale was completely removed, correspondingly the contact angle, the time of corrosion occurrence by copper sulfate drop test and electrochemical impedance all increased by 111.9%, 70% and 193% respectively, while the corrosion current decreased by 53.3% for the derust steel in comparison with the reference one.

Key words:  PFOA molecular film      rusty surface      surface treatment      electrochemical     
Received:  07 November 2016     
ZTFLH:  TG17  
Fund: Supported by National Natural Science Fundation of China (51075197), Industry-university-research Cooperation Project in Jiangsu Province (BY2013066-12) and Graduate Innovation Fund of Jiangsu University of Science and Technology (YCX11S-24)

Cite this article: 

Yinze ZUO, Baohua XU, Guisheng ZHU, Cheng HUANG, Qing FENG, Liang CHEN, Zhaolei LI, Yanmin GAO. Influence of Surface-active Agent PFOA Molecular Film on Rust Removal and Corrosion Behavior of Rusty Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 81-86.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.217     OR     https://www.jcscp.org/EN/Y2018/V38/I1/81

Fig.1  SEM image (a) and EDS analysis result (b) of the corrosion products of Q235 steel
Fig.2  XRD pattern of the corrosion products of Q235 steel
Fig.3  Macro appearances of Q235 steel with rust layer before (a) and after immersion in the deionized deionized water solutions containing 0 g/L (b), 1 g/L (c), 10 g/L (d), 100 g/L (e), 150 g/L (f) and 200 g/L (g) PFOA
Fig.4  SEM images of Q235 steel with rust layer before (a) and after immersion in deionized water solutions containing 0 g/L(b), 1 g/L (c), 10 g/L (d), 100 g/L (e), 150 g/L (f) and 200 g/L (g) PFOA
Fig.5  Polarization curves of Q235 steel with rust layer after immersion in deionized water solutions containing different contents of PFOA
Concentration of PFOA / gL-1 E / mV I / Acm-2
0 588.51 1.46×10-4
1 603.92 1.12×10-4
10 610.47 9.21×10-5
100 613.09 8.93×10-5
150 621.77 6.82×10-5
200 608.15 8.27×10-5
Table 1  Corrosion parameters of Q235 steel with rust layer after immersion in deionized water solutions conting different contents of PFOA
Fig.6  Electrochemical impedance spectroscopies of Q235 steel with rust layer after immersion in deionized water solutions containing different contents of PFOA
Fig.7  Equivalent circuit model of Q235 steel after immersion in deionized water solutions containing different contents of PFOA
[1] Yang X F, Zheng W L.Analysis on the corrosion rust of weathering steel and carbon steel exposed to atmosphere for two years[J]. Corros. Prot., 2002, 23: 97(杨晓芳, 郑文龙. 暴露2年的碳钢与耐候钢表面锈层分析[J]. 腐蚀与防护, 2002, 23: 97)
[2] Zhang Q C, Wu J S, Zheng W L, et al.Formation mechanism of protective rust on weathering steel[J]. Corros. Sci. Prot. Technol., 2001, 13: 143(张全成, 吴建生, 郑文龙等. 耐候钢表面稳定锈层形成机理的研究[J]. 腐蚀科学与防护技术, 2001, 13: 143)
[3] Li Q X, Wang Z Y, Han W, et al.Analysis on the corrosion rust of carbon steel exposed to salt lake area for 25 months[J]. Acta Phys.- Chim. Sin., 2008, 24: 1459(李巧霞, 王振尧, 韩薇等. 盐湖地区暴露25个月的碳钢表面锈层分析[J]. 物理化学学报, 2008, 24: 1459)
[4] Raman A, Kuban B, Razvan A.The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products[J]. Corros. Sci., 1991, 32: 1295
[5] Qian B, Hou B R, Zheng M.The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions[J]. Corros. Sci., 2013, 72: 1
[6] Gao Y C.Pickling technology (II)[J]. Surf. Technol., 1990, 19(2): 43(高元成. 酸洗除锈技术 (II)[J]. 表面技术, 1990, 19(2): 43)
[7] Lin G N, Chen X Y, Tang B, et al.The cleaner production of pickling steel for iron steel parts with rust in fix quantify[J]. Guangdong Chem. Ind., 2008, 35(5): 56(林国宁, 陈欣义, 汤兵等. 钢铁化学酸洗除锈清洁生产过程[J]. 广东化工, 2008, 35(5): 56)
[8] Rahim A A, Kassim M J, Rocca E, et al.Mangrove (Rhizophora apiculata) tannins: An eco-friendly rust converter[J]. Corros. Eng. Sci. Technol., 2011, 46: 425
[9] Collazo A, Nóvoa X R, Pérez C, et al.The corrosion protection mechanism of rust converters: An electrochemical impedance spectroscopy study[J]. Electrochim. Acta, 2010, 55: 6156
[10] Xiao J X, Jiang H.Fluorinated surfactants[J]. China Surf. Deter. Cosmet., 2001, 31(5): 24(肖进新, 江洪. 碳氟表面活性剂[J]. 日用化学工业, 2001, 31(5): 24)
[11] Zhao C X, Xu K Q, Tang C M.Study on fluorocarbon surfactant[J]. Sichuan Chem. Ind., 2004, 7(3): 13)(赵春霞, 徐卡秋, 唐聪明. 氟碳表面活性剂研究[J]. 四川化工, 2004, 7(3): 13)
[12] Key B D, Howell R D, Criddle C S.Fluorinated organics in the biosphere[J]. Environ. Sci. Technol., 1997, 31: 2445
[13] Wang Q, Nan S F, Dou M.Experimental investigation on nanofiltration treatment of waste water containing low concentration ammonium perfluorooctanoate[J]. J. Chem. Eng. Chin. Univ., 2008, 22: 684(王钦, 南碎飞, 窦梅. 纳滤法处理低浓度全氟辛酸铵废水的研究[J]. 高校化学工程学报, 2008, 22: 684)
[14] Nan S F, Wang F, Wang Q, et al.Process integration of nanofiltration and foam separation for disposal of waste water with low concentration ammonium perfluorooctanoate[J]. J. Chem. Eng. Chin. Univ., 2009, 23: 709(南碎飞, 王斐, 王钦等. 纳滤和泡沫分离联合处理含全氟辛酸铵废水的研究[J]. 高校化学工程学报, 2009, 23: 709)
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[6] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[8] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[10] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[12] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[13] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[14] ZHU Zejie,ZHANG Qinhao,LIU Pan,ZHANG Jianqing,CAO Fahe. Application of Microelectrochemical Sensors in Monitoring of Localized Interface pH[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[15] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
No Suggested Reading articles found!