Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 510-518    DOI: 10.11902/1005.4537.2014.273
Current Issue | Archive | Adv Search |
Epoxy Based Conductive Anti-corrosion Coatings for Grounding Grid
Shinian LIU1,Cheng WANG2(),Jilun DENG3,Xi LI3,Shenglong ZHU2,Fuhui WANG2
1. Electric Power Research Institute of Guangdong Power Grid Co. Ltd., Guangzhou 510080, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Dongguan Power Supply Bureau of Guangdong Power Grid Co. Ltd., Dongguan 523008, China
Download:  HTML  PDF(1352KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Epoxy based conductive anti-corrosion coatings were prepared on the surface of grounding grid Q235 carbon steel with graphite, carbon fiber andaluminum tripolyphosphateas pigments. The influence of the pigment/binder ratio (PBR) on the properties of the coatings was investigated such as the morphology and the electric conductivity of the coatings as well the corrosion behavior of Q235 carbon steel coated by coatings with an optimal PBR by immersion in salt solutions and burying in a selected soil from Shenyang test site. The results indicated that after buried in the soil, the bare Q235 steel suffered from serious corrosion and bubbles occurred on the E44 lacquer coating on the steel, in the contrast, the coatings with the optimal PBR showed excellent protectiveness for the steel even after buried for up to 1000 h in the soil. The volume resistivity and surface contact resistivity of the coatings are 0.65 Ω·cm and 8.72 Ω/cm2 respectively. The coatings exhibited excellent with standing capacity to high current impulse, such as their electrical resistance decreased by 5.95% and 11.09% for the ones suffered from a high current impulse of 1 kA for 20 times and a power frequency current of 10 A for 5 times respectively, while the surface of the coatings maintained unchanged without any destruction.

Key words:  grounding grid      carbon steel      conductive coating      large scale current impulsion      electrochemistry     

Cite this article: 

Shinian LIU,Cheng WANG,Jilun DENG,Xi LI,Shenglong ZHU,Fuhui WANG. Epoxy Based Conductive Anti-corrosion Coatings for Grounding Grid. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 510-518.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.273     OR     https://www.jcscp.org/EN/Y2015/V35/I6/510

Fig.1  Influence of PBR on the adhesion (a) and resistance (b) of the coatings
Medium PBR
3:7 4:6 1:1
3.0%NaCl No corrosion detected after immersedfor 4 months No corrosion detected after immersed for 4 months Serious corrosion detected after immersed for 9 h
NSS No corrosion detected after exposed for 4 months No corrosion detected after exposed for 4 months Serious corrosion detected after exposed for 5 h
10%H2SO4 No corrosion detected after immersed for 4 months No corrosion detected after immersed for 4 months Serious bubbling occurred after immersed for 10 h
10%NaOH No corrosion detected after immersed for 4 months No corrosion detected after immersed for 4 months No corrosion detected after immersed for 4 months
Table 1  Influence of PBR on the corrosion resistance of the coatings
Fig.2  SEM images of coatings with different PBR of 4:6 (a) and 1:1 (b)
Fig.3  Surface images of Q235 steel coated with conductive anti-corrosion coating (a) and naked Q235 steel (b) after corrosion in soil
Fig.4  Surface and cross-sectional images of Q235 carbon steel coated with conductive anti-corrosion coating, before (a, b) and after (c, d) corrosion for 4 months in soil
Fig.5  Surface (a) and section (b) images of Q235 steel after corrosion in soil at 30 ℃
Fig.6  Nyquist (a), phase angle and modulus vs frequency (b) plots of Q235 carbon steel coated with conductive anti-corrosion coating
Fig.7  Nyquist (a, c), phase angle and modulus vs frequency (b, d) plots of Q235 steel coated with E44 lacquer coating
Fig.8  Characteristic frequencies of Q235 steel coated two different coatings in soil
Fig.9  Corrosion potentials of Q235 steel in soil as a function of time
Fig.10  Changes of resistance of the conductive anti-corrosion coating after current impulsion
[1] Chen G H, Jiang J W.Reason analysis and handling measures of grounding net corrosion in 220 kV Shuibei substation[J]. Elec. Equip., 2006, 7(4): 67
[1] (陈光辉, 姜建武. 220 kV水贝变电站地网腐蚀原因分析及改进措施[J]. 电力设备, 2006, 7(4): 67)
[2] Tan Z H, Zhu Z P, Pei F, et al.Influence of DC stray current on corrosion behavior of grounding grid materials in soils with different moisture content[J]. Corros. Sci. Proct. Technol., 2013, 25(3): 207
[2] (谭铮辉, 朱志平, 裴锋等. 直流杂散电流对不同含水率土壤中接地网材料腐蚀特性的影响[J]. 腐蚀科学与防护技术, 2013, 25(3): 207)
[3] Yan A, Hou J, Chen Y, et al.Study of the soil corrosion of Q235 steel ground grid in Weinan Shaanxi[J]. Mater. Sci., 2011, 47(1): 114
[4] Barbalat M, Lanarde L, Caron D, et al.Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55(1): 246
[5] Chen J S, Xiang C F, Huang X L.Conductive anticorrosive paint for ground system[J]. Elec. Power, 1997, 30(11): 63
[5] (陈健生, 项昌富, 黄显立. 电力接地网用导电防腐涂料[J]. 中国电力, 1997, 30(11): 63)
[6] Yan A J, Chen Y, Feng L J.Soil corrosion performance of several grounding net material[J]. Corros. Sci. Prot. Technol., 2010, 22(3): 197
[6] (闫爱军, 陈沂, 冯拉俊. 几种接地网材料在土壤中的腐蚀特性研究[J]. 腐蚀科学与防护技术, 2010, 22(3): 197)
[7] Xu C W, Hu X W.Investigation of anti-corrosive metallic material for earthing grid[J]. Power Syst. Technol., 2003, 27(8): 77
[7] (许崇武, 胡学文. 接地网防蚀金属材料性能实验研究[J]. 电网技术, 2003, 27(8): 77)
[8] Yan F J, Li X G.Corrosion and protection of grounding net in electric power system[J]. Shangdong Elec. Power, 2007, 33(1): 9
[8] (闫风洁, 李辛庚. 电力接地网腐蚀与防护技术的进展[J]. 山东电力技术, 2007, 33(1): 9)
[9] Marchebois H, Touzain S, Joiret S, et al.Zinc-rich powder coatings corrosion in sea water: Influence of conductive pigments[J]. Prog. Org. Coat., 2002, 45(4): 415
[10] Marco-A D, Wilson A.Conductive polymer blends: Preparation, properties and applications[J]. Macromol. Symp., 2002, 189(1): 83
[11] Liu B, Li Y, Lin H, et al.Effect of PVC on the diffusion behaviour of water through alkyd coatings[J]. Corros. Sci., 2002, 44(12):2657
[12] Yang L H, Liu F C, Han E-H.Anti-corrosion performance studies of the nano-ZnO polyurethane coatings[J]. Chin. J. Mater. Res., 2006, 20(4): 354
[12] (杨立红, 刘福春, 韩恩厚. 纳米氧化锌改性聚氨醋复合涂层的防腐性能[J]. 材料研究学报, 2006, 20(4): 354)
[13] Ma X Y, Liu C T.Investigation of the application of conductive filler in electrostatic conduction epoxy coatings[J]. Chin. Coat., 2010, 25(9): 52
[13] (马翔宇, 刘承泰. 导电填料在环氧导静电涂料中的应用探讨[J]. 中国涂料, 2010, 25(9): 52)
[14] Kohl M, Kalendová A, Stejska J.The effect of polyaniline phosphate on mechanical and corrosive properties of protective organic coatings containing high amounts of zinc metal particles[J]. Prog. Org. Coat., 2014, 77(2): 512
[15] Chen S, Zhu J, Zhou T, et al.Preparation and properties study of polyaniline conductive anti-fouling coatings[J]. Int. J. Electrochem. Sci., 2012, 7(9): 8170
[16] Wicks Jr Z, Jones N, Pappas S, et al.Organic Coatings: Science and Technology[M]. 3rd Ed., New York: Wiley-Interscience, 2007
[17] Prita P, Bhanudas N, Ghosh N.Low temperature synthesis of single-phase α-Fe2O3 nano-powders by using simple but novel chemical methods[J]. Powder Technol., 2009, 192(3): 245
[18] Dinesh V, Arvind Y.Structural and electrical conductivity of Mn doped hematite (α-Fe2O3) phase[J]. J. Mol. Struct., 2011, 995(1-3):157
[19] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[19] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[20] Chen Y, Wang X, Li J, et al.Long-term anticorrosion behaviour of polyaniline on mild steel[J]. Corros. Sci., 2007, 49(7): 3052
[21] Yang X, Li J, Croll S, et al.Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures[J]. Polym. Degrad. Stabil., 2003, 80(1): 51
[22] Grgur B, Elkais A, Gvozdenovć M, et al.Corrosion of mild steel with composite polyaniline coatings usingdifferent formulations[J]. Prog. Org. Coat., 2015, 79(1): 17
[23] Haruyama S, Asari M, Tsuru T.Mass transport in blistering of coated steel. In: KendigLeidheiser Jr M Eds., Corrosion Protection by Organic Coatings Pennington [M]. Pernington: The Electrochemical Society, 1987
[24] Li W, Zuo Y, Xiong J P, et al.EIS study of multilayer organic coatings on steel with different surface pretreatments[J]. J. Chem. Ind. Eng., 2008, 59(2): 420
[24] (李玮, 左禹, 熊金平等.不同表面处理条件下复合涂层体系失效过程的EIS特征[J]. 化工学报, 2008, 59(2): 420)
[25] Haruyama S, Hirayama R.Electrochemical impedance for degraded coated steel having pores[J]. Corrosion, 1991, 47(12): 952
[26] Kang X J, Fan W Y, Zhang Y Y, et al.Preparation and long-term anticorrosion protection of polyaniline waterborne coating[J]. J. Chin. Soc. Corros. Prot., 2012, 32(5): 393
[26] (康先进, 范文玉, 张彦英等. 聚苯胺长效防腐水性环保涂料的研制及性能研究[J]. 中国腐蚀与防护学报, 2012, 32(5): 393)
[27] Leng A, Streckel H, Stratmann M.The delamination of polymeric coatings from steel. Part I: Calibration of the Kelvin probe and basic delamination mechanism[J]. Corros. Sci., 1998, 41(3): 547
[28] Westing E, Ferrari G, Wit J.The determination of coating performance with impedance measurements-IV. Protective mechanisms of anticorrosion pigments[J]. Corros. Sci., 1994, 36(8): 1323
[29] Lu G, Cummer S, Blakeslee R, et al.Lightning morphology and impulse charge moment change of high peak current negative strokes[J] J. Geophys. Res., 2012, 117: D04212
[30] Rakov V.The physics of lightning[J]. Surv. Geophys., 2013, 34(6): 701
[1] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[5] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[6] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[9] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[10] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[11] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[12] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[13] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[15] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
No Suggested Reading articles found!