Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 496-504    DOI: 10.11902.1005.4537.2014.157
Current Issue | Archive | Adv Search |
Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Anionic Surfactants in CO2-saturatedBrine Solution
Chen ZHANG1,Jingmao ZHAO1,2()
1. College of Material Science and Engineering,Beijing University of Chemical Technology, Beijing 100029, China
2. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
Download:  HTML  PDF(1090KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

: The synergistic inhibition effect of imidazoline ammonium salt (IAS) and three anionic surfactants on corrosion of Q235 carbon steel in CO2 saturated brine solution was studied by using mass loss method, potentiodynamic polarization measurements and molecular dynamics (MD) simulation. It is found that in CO2 saturated brine solution, there exists a good synergistic inhibition effect between IAS and sodium dodecyl sulfonate (SDSH), and the most significant synergistic inhibition with an inhibition efficiency of 88.5% occurs when the concentration ratio of them is 1:1. The synergism also occurs when using IAS together with sodium dodecyl benzene sulfonate (SDBS). However the antagonism occurs between IAS and sodium dodecyl sulfate (SDSL). Good corrosion inhibition on Q235 carbon steel is also found when only one of the three anionic surfactants is used. The factors affecting the synergism between IAS and the three surfactants were conjectured using molecular simulation.

Key words:  CO2 corrosion      adsorption      synergism      antagonism      molecular simulation     

Cite this article: 

Chen ZHANG,Jingmao ZHAO. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Anionic Surfactants in CO2-saturatedBrine Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 496-504.

URL: 

https://www.jcscp.org/EN/10.11902.1005.4537.2014.157     OR     https://www.jcscp.org/EN/Y2015/V35/I6/496

Fig.1  Molecular formula of IAS (a), SDBS (b), SDSH (c) and SDSL (d)
Fig.2  Diagrams of three models: (a) equilibrium adsorption configuration of single IAS and six anionic surfactant molecules on metal surface; (b) model for calculating the interaction of single IAS and single surfactant molecules; (c) model for calculating free volume fraction
Fig.3  η and S curves in CO2-saturated 3.5%NaCl solutions with different concentrations of inhibitors: (a) IAS; (b)SDSH and IAS/SDSH; (c) SDBS and IAS/SDBS; (d) SDSL and IAS/SDSL
Fig.4  Polarization curves of Q235 steel in CO2-saturated 3.5%NaCl solutions with different concentrations of inhibitors: (a) IAS, SDSH and IAS/SDSH; (b) IAS, SDBS and IAS/SDBS; (c) IAS, SDSL and IAS/SDSL
Inhibitor / mg·L-1 βa / mV βc / mV Ecorr / vs SCE mV Icorr / mA·cm-2 η / %
--- 52.81 264.81 -699.44 0.0458 ---
IAS 50 58.83 174.96 -665.22 0.0179 60.9
IAS 100 60.20 163.45 -629.47 0.0103 77.5
SDSH 50 59.57 168.76 -620.54 0.0250 45.5
SDSH 100 70.34 117.70 -671.22 0.0077 83.2
IAS 50+SDSH 50 61.46 155.20 -634.75 0.0067 85.5
IAS 50+SDSH 100 72.86 111.25 -644.57 0.0043 90.6
SDBS 50 63.11 145.60 -694.60 0.0262 42.8
SDBS 100 51.45 305.05 -629.15 0.0196 57.2
IAS 50+SDBS 50 66.58 129.97 -665.09 0.0099 78.4
IAS 50+SDBS 100 56.46 199.99 -655.37 0.0128 72.1
SDSL 50 66.00 132.25 -720.79 0.0208 54.6
SDSL 100 78.75 99.85 -705.87 0.0230 49.8
IAS 50+SDSL 50 32.37 122.32 -612.79 0.0135 70.5
IAS 50+SDSL 100 42.91 157.85 -646.08 0.0122 73.4
Table 1  Electrochemical parameters of Q235 steel in CO2-saturated 3.5%NaCl solutions with differentconcentrations of inhibitors
Fig.5  Distribution diagrams of HOMO and LUMO orbits of SDSH (a), SDBS (b) and SDSL (c) (HOMO: blue and yellow; LUMO: green and red)
Surfactantmolecule EHOMOeV ELUMOeV E (ELUMO-EHOMO)eV
SDSH -1.699 3.428 5.127
SDBS -2.088 2.985 5.073
SDSL -2.206 3.442 5.648
Table 2  EHOMO, ELUMO and △E of surfactant molecules
Surfactant molecule H2O / r =0.1365 nm H3O+ / r =0.1405 nm Cl- / r =0.1725 nm HCO3- / r =0.1835 nm
SDSH 3.26 2.83 0.80 0.49
SDBS 3.70 3.27 1.09 0.72
SDSL 2.72 2.35 0.74 0.48
Table 3  FFV values in different systems
Fig.6  Equilibrium adsorption configurations on Fe (001) surface for single IAS and six SDBS (a), SDSH (b) and SDSL (c)
Fig.7  Concentration distribution curves of H2O molecules on Fe (001) surface
[1] Zhao J M, Shang H S, Wang S D.Synthesis of an imidazoline quaternary ammonium salt and its corrosion inhibition in CO2 corrosive systems[J]. J. Beijing Univ. Chem. Technol.(Nat. Sci.), 2012, 39(5): 37
[1] (赵景茂, 尚洪帅, 王帅东. 咪唑啉季铵盐的合成及其在CO2腐蚀环境中的缓蚀性能[J]. 北京化工大学学报 (自然科学版), 2012, 39(5): 37)
[2] Lv Z P, Zheng J S, Peng F M.Reducing the used concentration of CO2 corrosion inhibitor by synergistic effect[J]. Corros. Prot., 1999,20(9): 395
[2] (吕战鹏, 郑家燊, 彭芳明. 利用缓蚀协同效应降低二氧化碳缓蚀剂使用浓度[J]. 腐蚀与防护, 1999, 20(9): 395)
[3] Okafor P C, Liu C B, Liu X, et al.Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea[J]. Solid State Electrochem., 2010, 14(8): 1367
[4] Zhao J M, Liu H X, Di W, et al.The inhibition synergistic effect between imidazoline derivative and thiourea[J]. Electrochemistry, 2004, 10(4): 440
[4] (赵景茂, 刘鹤霞, 狄伟等. 咪唑啉衍生物与硫脲之间的缓蚀协同效应研究[J]. 电化学, 2004, 10(4): 440)
[5] Zhao J M, Chen G H.Synergistic inhibition mechanism of imidazoline and thiourea in CO2 corrosive system[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 226
[5] (赵景茂, 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的缓蚀协同作用机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 226)
[6] Deng S D, Li X H, Bai W, et al.Synergistic effect on inhibition by surfactants for steel in hydrochloric acid solution[J]. Cleaning World, 2007, 23(7): 1
[6] (邓书端, 李向红, 白玮等. 表面活性剂在HCl中对钢的缓蚀协同效应[J]. 清洗世界, 2007, 23(7), 1)
[7] Yuan L B, Liu X X, Zhao Q R, et al.The synergistic effect of inhibition corrosion of different surfactant for steel in hydrochloric acid solution[J]. J. Yunnan Normal Univ., 2003, 23(6): 58
[7] (袁朗白, 刘晓轩, 赵黔榕等. 不同表面活性剂在盐酸介质中对钢的缓蚀协同效应[J]. 云南师范大学学报, 2003, 23(6): 58)
[8] An Y, Xu Q.The inhibition for pitting corrosion of stainless steel in simulated circulating cooling water by SDS[J]. Plat. Finish., 2012, 34(3): 10
[8] (安洋, 徐强. 十二烷基硫酸钠对不锈钢在循环冷却水中的缓蚀作用[J]. 电镀与精饰, 2012, 34(3): 10)
[9] Xu X M, Ge H H, Wu J N, et al.Corrosion inhibition of sodium dodecyl benzene sulfonate to stainless steel[J]. Corros. Prot., 2012, 33(9): 740
[9] (徐学敏, 葛红花, 吴佳妮等. 模拟水中十二烷基苯磺酸钠对不锈钢的缓蚀作用[J]. 腐蚀与防护, 2012, 33(9): 740)
[10] Zhao J M, Li J.Gemini surfactants containing hydroxyl group as corrosion inhibitors for Q235 steel in brine solution saturated by CO2[J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 349
[10] (赵景茂, 李俊. 含羟基双子表面活性剂在CO2饱和盐水溶液中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(4):349)
[11] Zhao J M, Chen G H.The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution[J]. Electrochim. Acta, 2012, 69: 247
[12] Zhang C, Zhao J M.Synergistic inhibition effect of imidazoline ammonium salt and sodium dodecyl sulfate in CO2 system[J]. Acta Phys.-Chim. Sin., 2014, 30(4): 677
[12] (张晨, 赵景茂. CO2体系中咪唑啉季铵盐与十二烷基磺酸钠之间的缓蚀协同效应[J]. 物理化学学报, 2014, 30(4): 677)
[13] Zhang J, Zhao W M, Guo W Y, et al.Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitors[J]. Acta Phys.-Chim. Sin., 2008, 24(7): 1239
[13] (张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239)
[14] Hu S Q, Hu J C, Shi X, et al.QSAR and molecular design of imidazoline derivatives as corrosion inhibitors[J]. Acta Phys.-Chim. Sin., 2009, 25(12): 2524
[14] (胡松青, 胡建春, 石鑫等. 咪唑啉衍生物缓蚀剂的定量构效关系及分子设计[J]. 物理化学学报, 2009, 25(12): 2524)
[15] Musa A Y, Jalgham R T T, Mohamad A B. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1M HCl[J]. Corros. Sci., 2012, 56: 176
[16] Wang D, Xiang B, Liang Y, et al.Corrosion control of copper in 3.5wt.%NaCl solution by domperidone: Experimental and theoretical study[J]. Corros. Sci., 2014, 85: 77
[17] Yan Y, Wang X, Zhang Y, et al.Molecular dynamics simulation of corrosive species diffusion in imidazoline inhibitor films with different alkyl chain length[J]. Corros. Sci., 2013, 73: 123
[18] Chen G H.Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
[18] (陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012)
[19] Wei B M.Metal Corrosion Theory and Application [M]. Beijing: Chemical Industry Press, 1991: 272
[19] (魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1991: 272)
[20] Tavakoli H, Shahrabi T, Hosseini M.Synergistic effect on corrosion inhibition of copper by sodium dodecyl benzenesulphonate (SDBS) and 2-mercaptobenzoxazole[J]. Mater. Chem. Phys., 2008,109: 281
[21] Yang P, Gao X H.Chemical Bonding and Structure-property Relations [M]. Beijing: Higher Education Press, 1987
[21] (杨频, 高孝恢. 性能-结构-化学键 [M]. 北京: 高等教育出版社, 1987)
[22] Bondi A.Van der Waals volumes and radii[J]. J. Phys. Chem., 1964, 68(3): 441
[23] Pan F, Peng F, Jiang Z.Diffusion behavior of benzene/cyclohexane molecules in poly (vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation[J]. Chem. Eng. Sci., 2007, 62(3): 703
[1] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[2] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[3] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[4] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[5] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[6] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[7] Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[8] Tao YAN,Zhenlun SONG,Moradi Masoumeh,Lijing YANG,Tao XIAO,Lifeng HOU. Effect of Vibrio Neocaledonicus sp. on Corrosion Behavior of Copper in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 157-164.
[9] ZHAO Tong, ZHAO Jingmao, JIANG Ruijing. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[10] XIE Bin, ZHU Shasha, LI Yulong, LAI Chuan, LIN Xiao, ZOU Like, HE Linxin, CHEN Neng. Corrosion Inhibition Performance of Diethylammonium O,O '-Di(2-phenylethyl)dithiophosphate for Q235 Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(4): 366-374.
[11] ZENG Huijing, LI Guangyong, WU Huan, GAO Lixin, ZHANG Daquan. Synergistic Effect of Triethyl Phosphate and Cerium (IV) Ion on Corrosion Inhibition for Copper in Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2014, 34(3): 271-276.
[12] LUO Liang. Inhibition of 2-((Pyridin-2-Ylimino) Methyl) Phenol for Q235 Steel in 1 mol/L HCl Solution[J]. 中国腐蚀与防护学报, 2013, 33(3): 221-225.
[13] LIU Zheng,LIU Jie,LIU Jin,LIU Baoyu. Corrosion Inhibitor of Salicylic Aldehyde Pyridine Hydrazone for Mild Steel in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(2): 109-116.
[14] ZHAO Jingmao, LI Jun. GEMINI SURFACTANTS CONTAINING HYDROXYL GROUP AS CORROSION INHIBITORS FOR Q235 STEEL IN BRINE SOLUTION SATURATED BY CO2[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[15] HU Lianyue, ZHANG Shengtao,HUANG Xiaohong, WU Yongying. CORROSION INHIBITION OF 6-NITROBENZIMIDAZOLE IN KOH SOLUTION FOR ZINC[J]. 中国腐蚀与防护学报, 2012, 32(3): 267-272.
No Suggested Reading articles found!