Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 563-570    DOI: 10.11902/1005.4537.2014.123
Current Issue | Archive | Adv Search |
Technology for Enhancing Durability of Structures of Sea-sand Concrete and Its Application
Jianghong MAO1,Weiliang JIN1,2(),Hua ZHANG2,Chen XU2,Jin XIA2
1. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
2. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
Download:  HTML  PDF(865KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As one type of typical nondestructive technique of life extension, bi-directional electro-migration (BIEM) can enhance the durability of concrete structures, which suffered from chloride attack. During the BIEM process, rust-inhibitor can be migrated inward to the surface of steel bar while the chloride can be extracted out of the concrete cover. This paper applied the BIEM technique to reinforced concrete slabs poured with sea sand and seawater. The results showed that the migration of rust-inhibitor and the extraction of chloride could be realized for the reinforcing bars located within a range of 12 cm from the lateral side of an electrolyte maintaining device. In accordance with the electron flux equivalent principle, the needed time and current density for realizing the practical engineering applications could be calculated from the measured voltage and safety voltage of concrete. A trial application of BIEM to several engineering concrete structures with sea sand proved that the ratio of organics content to the chloride concentration was far above 1.0. Consequently, both of the laboratory experiment and the engineering applicant indicated that BIEM technique could play an excellent role in chloride extraction and rust resistance, thus could act as an effective method for enhancing the durability of the existed sea sand containing structures.

Key words:  concrete      sea sand      bi-directional electro-migration rehabilitation      electro-chemical chloride removal      durability     

Cite this article: 

Jianghong MAO,Weiliang JIN,Hua ZHANG,Chen XU,Jin XIA. Technology for Enhancing Durability of Structures of Sea-sand Concrete and Its Application. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 563-570.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.123     OR     https://www.jcscp.org/EN/Y2015/V35/I6/563

Fig.1  Schematic diagram of BIEM
Fig.2  Laboratory layout of BIEM test: (a) electrolyte container, (b) control unit
Plate
number
Device
number
Steel bar number Section
area / m2
Main bar Stirrup
I 1 6 3 0.18
2 6 3 0.18
3 5 3 0.16
II 1 5 3 0.16
2 5 3 0.16
3 5 4 0.17
Table 1  Parameter settings of BIEM in laboratory tests
Fig.3  Evolutions of Cl- concentration in the electrolyte(method I)
Fig.4  Evolutions of concrete resistance (method II)
Fig.5  Distribution of sampling points for effect evaluation of BIEM
Fig.6  Cl- distribution in the covered area
Fig.7  Residual Cl- distribution outside plate: (a) between plate II-1 and plate II-2, (b) outside plate II-1
Position of
sampling point
Inhibitors concentration Chloride concentration Ratio
(N/Cl-)
% mol/g % mol/g
Right 2.5 cm 0.016 2.770×10-6 0.013 3.662×10-6 0.76
Right 5.0 cm 0.013 2.395×10-6 0.021 5.775×10-6 0.41
Right 7.5 cm 0.012 2.195×10-6 0.024 6.732×10-6 0.33
Right 10.0 cm 0.012 2.089×10-6 0.029 8.085×10-6 0.26
Right 12.5 cm 0.010 1.822×10-6 0.024 6.789×10-6 0.27
Inside device 0.025 4.499×10-6 0.013 3.549×10-6 1.27
Left 2.5 cm 0.025 4.475×10-6 0.012 3.408×10-6 1.31
Left 10.0 cm 0.008 1.512×10-6 0.025 7.155×10-6 0.21
Left 12.5 cm 0.016 2.786×10-6 0.031 8.732×10-6 0.32
Table 2  Moving concentration of corrosion inhibitor after experiment
Position Steel bar number Section
area / m2
Main bar Stirrup
Column-1 3 4 0.1628
Column-2 3 4 0.1628
Wall-1 4 4 0.1929
Wall-2 3 4 0.1628
Wall-3 4 4 0.1929
Wall-4 3 3 0.1447
Table 3  Parameter settings of BIEM in practical engineering
Fig.8  Site layout of BIEM: (a) column, (b) shearingwall
Fig.9  Sampling points distribution on column
Distance from concrete surface / mm Position of sample point Cl- N N/Cl-
5 Inside of device 0.03 0.21 4.44
Outside of device 0.02 0.36 11.41
10 Inside of device 0.04 0.22 3.49
Outside of device 0.06 0.32 3.38
15 Inside of device 0.03 0.25 5.28
Outside of device 0.03 0.31 6.55
20 Inside of device 0.03 0.27 5.71
Outside of device 0.03 0.37 7.82
25 Inside of device 0.03 0.21 4.44
Outside of device 0.04 0.34 5.39
30 Inside of device --- --- ---
Outside of device 0.03 0.46 9.72
Table 4  Cl- and N concentrations determined at different positions after field application of BIEM
[1] JGJ206-2010. Technical specification for sea sand concrete[S]
[1] (JGJ206-2010. 海砂混凝土应用技术规范[S])
[2] Wang S X, Lin W W, Zhang J Q, et al.Corrosion inhibition behavior of diethylenetriamine/thiourea adduct for steel reinforcements in concrete[J]. J. Chin. Soc. Corros. Prot., 2000, 22(1): 15
[2] (王胜先, 林薇薇, 张鉴清等. 硫脲-二乙烯三胺缩聚物对混凝土中钢筋的缓蚀作用[J]. 中国腐蚀与防护学报, 2000, 22(1): 15)
[3] Zhou J L, Ou Z W, Jiang S Y, et al.Discussion of rebar-protecting properties of seawater-seasand concrete mixed with admixture and corrosion inhibitor[J]. J. Build. Mater., 2012, 15(1): 69
[3] (周俊龙, 欧忠文, 江世永等. 掺阻锈剂掺合料海水海砂混凝土护筋性探讨[J]. 建筑材料学报, 2012, 15(1): 69)
[4] Yang C H, Zhang H, Ou Z W, et al.Corrosion inhibitor for concrete based on seawater and sea sands[J]. Concrete, 2010, (11): 69
[4] (杨长辉, 张航, 欧忠文等. 适用于海水海砂混凝土的阻锈剂[J]. 混凝土, 2010, (11): 69)
[5] Zheng R Y, Yuan L L, He Z M.Sea sand corrosion to reinforced concrete and countermeasure in Ningbo[J]. Concrete, 2004,(10): 22, 2004, (10): 22)
[6] JTS153-2-2012. Technical specification for electrochemical anticorrosion of reinforcement concrete structures in harbour and marine engineering[S]
[6] (JTS153-2-2012. 海港工程钢筋混凝土结构电化学防腐技术规范[S])
[7] Fajardo G, Escadeillas G, Arliguie G.Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial” sea-water[J]. Corros. Sci., 2006, 48(1): 110
[8] Tang J W, Li S L, Cai W C, et al.Investigation of inhibitor electromigration anticorrosion technology on reinforced concrete[J]. OceanEng., 2008, 26(3): 83
[8] (唐军务, 李森林, 蔡伟成等. 钢筋混凝土结构电渗阻锈技术研究[J]. 海洋工程, 2008, 26(3): 83)
[9] Kubo J, Sawada S, Page C L, et al.Electrochemical inhibitor injection for control of reinforcement corrosion in carbonated concrete[J]. Mater. Corros., 2008, 59(2): 107
[10] Sawada S, Page C L, Page M M.Electrochemical injection of organic corrosion inhibitors into concrete[J]. Corros. Sci., 2005, 47(8): 2063
[11] Zhang S Y.A study of corrosion inhibitors for bidi-rectional electromigration rehabilitation [D]. Hangzhou: Zhejiang University, 2012)
[11] (章思颖. 应用于双向电渗技术的电迁移型阻锈剂的筛选 [D]. 杭州: 浙江大学, 2012)
[12] Guo Z.A study of triethylenetetramine corrosion inhibitor for bilateral electro-osmotic method [D]. Hangzhou: Zhejiang University, 2013
[12] (郭柱. 三乙烯四胺阻锈剂双向电渗效果研究 [D]. 杭州: 浙江大学, 2013)
[13] Huang N.Remediation effect and other influence of bi-directional electro-migration rehabilitation on RC with chloride remediation effect and other influence of bi-directional electro-migration rehabilitation on RC with chloride [D]. Hangzhou: Zhejiang University, 2014
[13] (黄楠. 双向电渗对氯盐侵蚀钢筋混凝土结构的修复效果及综合影响 [D]. 杭州: 浙江大学, 2014)
[14] JY/T017-1996. General rules for elemental analyzer[S]
[14] (JY/T017-1996. 元素分析仪方法通则[S])
[1] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[7] Xuekai TIAN, Hailong WANG, Xudong CHENG, Xiaoyan SUN. Effect of Crack Characteristics on Chloride Transport in Concrete: An Overview[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[8] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[9] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[10] Xingguo FENG,Xiangyu LU,Yu ZUO,Da CHEN. Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
[11] Xudong CHENG,Lianfang SUN,Zhifeng CAO,Xingji ZHU. Cracking Process Analysis of Concrete Cover Caused by Non-uniform Corrosion[J]. 中国腐蚀与防护学报, 2015, 35(3): 257-264.
[12] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[13] YUE Zhuwen,LI Jingpei,YANG Bo,SHAO Wei,LV Tao. Solve Chloride Ions Diffusion Problem by Separation Variable Method for Reinforced Concrete Slab in Marine Environment[J]. 中国腐蚀与防护学报, 2014, 34(1): 95-100.
[14] DU Yali,ZHANG Junxi,JIANG Jun,YUAN Xujie,WANG Lingzhi,MA Xingchi. Corrosion Behavior of Reinforced Steel in Simulated Pore Solution with Gradual Augment of Cl- [J]. 中国腐蚀与防护学报, 2013, 33(4): 331-338.
[15] XU Chen,YUE Zengguo,JIN Weiliang. Research on Reinforcement Corrosion in Concrete by Using Electrochemical Frequency Modulation Technology[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
No Suggested Reading articles found!