Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (1): 95-100    DOI: 10.11902/1005.4537.2013.057
Current Issue | Archive | Adv Search |
Solve Chloride Ions Diffusion Problem by Separation Variable Method for Reinforced Concrete Slab in Marine Environment
YUE Zhuwen(), LI Jingpei, YANG Bo, SHAO Wei, LV Tao
Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
Download:  HTML  PDF(654KB) 
Export:  BibTeX | EndNote (RIS)      

Concrete slab as a part of marine engineering structure should surly be suffered from chloride ions corrosion. The relevant chloride ions diffusion problem in a concrete slab immersed in seawater was solved by means of separation variable method in this paper. In comparison with the solutions obtained by error function and numerical calculation methods, we proved this generalized solution was the correct answer for the bilateral chloride ion diffusion in a concrete slab. According to calculation and analysis, we found that the bilateral diffusion would cause greater harm than one side diffusion, but concentration superposition would not occur; chloride ion diffusion rate would speed up when concentration gradient increase caused by the increasing chloride ion concentration at one side surface. A mutation of chloride ion concentration gradient might occur where diffusion coefficient changed, but the chloride ion concentration distribution kept continuous.

Key words:  concrete      Cl-      bilateral diffusion      separation variable method     
Received:  18 July 2013     
ZTFLH:  TU528  

Cite this article: 

YUE Zhuwen, LI Jingpei, YANG Bo, SHAO Wei, LV Tao. Solve Chloride Ions Diffusion Problem by Separation Variable Method for Reinforced Concrete Slab in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 95-100.

URL:     OR

Composition of
cementitious material
Cement 0.6~0.7 0.6~0.7 0.35~0.45
Cement+Slag powder 0.7~0.9 0.7~0.9 0.45~0.55
Cement+Fly ash 0.7~0.9 0.7~0.9 0.45~0.55
Cement+Silica fume 0.6~0.7 0.6~0.7 0.45~0.55
Cement+Slag powder+
Fly ash
0.7~0.9 0.7~0.9 0.45~0.55
Cement+Slag powder+
Fly ash+Silica fume
0.7~0.9 0.7~0.9 0.45~0.55
Table1  Range of surface Cl- concentration at concrete surface (relative to concrete / %)
Service environment Limited content of Cl-/%
Bridge foundation 0.15
Prestressed concrete 0.06
Table 2  Limited content of Cl- in green concrete (relative to binder / %)
Fig.1  Comparisons of Cl- concentrations obtained by three different methods under the condition of symmetric diffusion
Fig.2  Symmetric solutions of separation of variables method
Fig.3  Cl- concentrations obtained under conditions of symmetric diffusion and unilateral diffusion
Fig.4  Asymmetric diffusion caused by different boundary conditions
Fig.5  Asymmetric diffusion caused by different diffusion coefficients
[1] Ann K Y, Song H. Chloride threshold level for corrosion of steel in concrete[J]. Corros. Sci., 2007, 49(11): 4113-4133
[2] Collepardi M, Marcialis A, Turriziani R. Penetration of chloride ions into cement pastes and concretes[J]. J. Am. Ceram. Soc., 1972, 55(10): 534-535
[3] Collepardi M, Marcialis A, Turriziani R. The kinetics of penetration of chloride ions into the concrete[J]. Il Cemento, 1970, 67(4): 157-164
[4] Tang L P, Gulikers J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete[J]. Cem. Concr. Res., 2007, 37(4): 589-595
[5] Yu H F, Sun W, Yan L H, et al. Study on prediction of concrete service life I—Theoretical model[J]. J. Chin. Ceram. Soc., 2002, 30(6): 686-690
(余红发, 孙伟, 鄢良慧等. 混凝土使用寿命预测方法的研究I—理论模型[J]. 硅酸盐学报, 2002, 30(6): 686-690)
[6] Suryavanshi A K, Swamy R N, Cardew G E. Estimation of diffusion coefficient for chloride ion penetration into structural concrete[J]. ACI Mater. J., 2002, 99(4): 441-449
[7] Yang L F, Chen Z, Wang Y, et al. Boundary element method for analysis of two-dimensional chloride diffusion in concrete[J]. J. Chin. Ceram. Soc., 2009, 37(7): 1110-1117
(杨绿峰, 陈正, 王燚等. 混凝土中氯离子二维扩散分析的边界元法[J]. 硅酸盐学报, 2009, 37(7): 1110-1117)
[8] Li X M, Wu F, Huang Z H. Analytical solution to chloride diffusion equation on concrete[J]. Concrete, 2009, (10): 30-33
(李秀梅, 吴锋, 黄哲华. 混凝土中氯离子扩散方程的解析解[J]. 混凝土. 2009, (10): 30-33)
[9] Jin W L,Yuan Y S,Wei J,et al. Concrete Structure Durability Theory and Design Method in a Chloride Environment[M]. Beijing: Science Press, 2011: 122-124
(金伟良,袁迎曙,卫军等. 氯盐环境下混凝土结构耐久性理论与设计方法[M]. 北京: 科学出版社, 2011: 122-124)
[10] Chen C S. Mathematical Physical Equation[M]. Beijing: Science and Education Press, 2008: 70-108
(陈才生. 数学物理方程[M]. 北京: 科学教育出版社, 2008: 70-108)
[11] Dassault Systèmes Simulia Corp. Abaqus 6.10: Analysis User's Manual, 2010
[12] Shi H S, Wang Q. Research on service life prediction of marine concrete[J]. J. Building Mater., 2004, 7(2): 161-167
(施惠生, 王琼. 海工混凝土使用寿命预测研究[J]. 建筑材料学报, 2004, 7(2): 161-167)
[13] Bamforth P B. The derivation of input data for modelling chloride ingress from eight-year UK coastal exposure trials[J]. Mag. Concr. Res., 1999, 51(2): 87-96
[14] Maage M, Helland S T, Carlsen J E. Chloride penetration in high performance concrete exposed to marine environment [A]. International RILEM Workshop on Durability of High Performance Concrete [C]. Ann Arbor : RILEM Publications SARL, 1994: 194-207
[15] Hobbs D W. Aggregate influence on chloride ion diffusion into concrete[J]. Cem. Concr. Res., 1999, 29(12): 1995-1998
[16] GB/T 50476-2008. Code for durability design of concrete structures[S]
(GB/T 50476-2008. 混凝土结构耐久性设计规范[S])
[17] CCES 01-2004 (2005 revised edition). Guide to durability design and construction of reinforced structures[S]
(CCES 01-2004 (2005年修订版). 混凝土结构耐久性设计与施工指南[S])
[18] Oh B H, Jang S Y. Effects of material and environmental parameters on chloride penetration profiles in concrete structures[J]. Cem. Concr. Res., 2007, 37: 47-53
[1] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] DENG Peichang, ZHONG Jie, WANG Kun, HU Jiezhen, LI Ziyun, CHEN Chuxin, SHEN Xiaohan. Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[4] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[8] Xuekai TIAN, Hailong WANG, Xudong CHENG, Xiaoyan SUN. Effect of Crack Characteristics on Chloride Transport in Concrete: An Overview[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[9] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[10] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[11] Weihang MIAO,Wenbin HU,Zhiming GAO,Xiangang KONG,Ru ZHAO,Junwu TANG. Corrosion Behavior of 304SS in Simulated Pore Solution of Concrete for Use in Marine Environment[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[12] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[13] Jianghong MAO,Weiliang JIN,Hua ZHANG,Chen XU,Jin XIA. Technology for Enhancing Durability of Structures of Sea-sand Concrete and Its Application[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
[14] Chenxi LV, Yinghua WEI, Jing LI, Chao SUN. Electrochemical Characteristics of Rebar in Polymer-modified Mortar and Resistance to Chloride Ion Penetration of Polymer-modified Concrete[J]. 中国腐蚀与防护学报, 2015, 35(5): 467-473.
[15] Xingguo FENG,Xiangyu LU,Yu ZUO,Da CHEN. Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.
No Suggested Reading articles found!