Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 571-576    DOI: 10.11902/1005.4537.2014.221
Current Issue | Archive | Adv Search |
A Prediction Method Based on Fuzzy Neural Network for Corrosion Rate of Marine Pipelines
Zhian DENG(),Shuyi LI,Xiaokun LI,Shan WANG,Xiaojun WANG
College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China
Download:  HTML  PDF(669KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An intelligent method based on fuzzy neural network and grey correlation analysis was proposed to predict the corrosion rate of oil and gas pipelines in marine environment. Through correlation analysis, the correlation between the corrosion rate of pipelines and environmental factors was built, and from which then the appropriate factors with high correlation could be picked out. Finally, the mapping relationship between the corrosion rate of pipelines and environmental factors could be figured out through fuzzy neural network. The validity and reliability of the results predicted by the proposed method were tested with statistic data which involved different environmental factors, it follows that the average relative error of the predicted corrosion rate was 5.96%, in other words, the present method exhibited a good accuracy in prediction even that less environmental factors were involved during the analysis process. Therefore, the method based on fuzzy neural network and grey correlation analysis, can predict the corrosion rate of pipelines rapidly and accurately with the known environmental factors.

Key words:  fuzzy neural network      pipeline corrosion      prediction      grey correlation analysis     

Cite this article: 

Zhian DENG,Shuyi LI,Xiaokun LI,Shan WANG,Xiaojun WANG. A Prediction Method Based on Fuzzy Neural Network for Corrosion Rate of Marine Pipelines. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 571-576.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.221     OR     https://www.jcscp.org/EN/Y2015/V35/I6/571

Fig.1  Topology of T-S FNN
Fig.2  Experimental procedure
Serial number Oceantemperature / ℃ Dissolved oxygen / mg·L-1 Salinity103 mg·L-1 pH Redox potential / mV Corrosion rateμA·cm-2
1 25.90 6.71 30.10 5.10 378 16.40
2 29.35 6.09 29.00 6.30 400 16.90
3 27.90 6.18 31.50 7.00 363 15.57
4 24.00 7.95 30.20 8.10 324 13.65
5 28.00 5.05 31.40 9.20 240 13.24
6 27.32 3.21 29.31 8.20 281 12.91
7 27.87 6.55 31.68 7.20 356 14.06
8 28.27 6.98 28.20 6.60 384 15.47
9 30.70 7.15 31.74 6.50 401 16.28
10 29.37 6.82 30.12 6.20 414 17.11
11 24.27 0.80 32.56 8.10 717 3.61
12 27.45 2.60 35.37 7.96 287 7.94
13 27.23 4.20 31.94 7.89 289 9.63
14 27.48 5.90 32.39 7.83 331 10.58
15 28.75 6.80 32.22 8.00 340 11.43
16 28.52 8.40 32.10 8.01 345 12.52
17 28.45 9.90 31.95 7.93 309 22.64
18 23.95 7.61 9.17 8.04 231 10.94
19 24.73 6.06 17.33 7.88 321 11.45
20 24.60 7.52 24.42 7.57 210 11.83
21 24.51 7.02 32.00 8.16 308 12.55
22 23.65 6.51 41.34 7.67 245 8.40
23 16.74 7.11 33.55 8.25 178 10.85
24 21.11 6.03 33.44 8.03 295 11.45
25 25.57 6.70 32.19 8.09 325 11.87
26 31.16 4.38 33.21 7.94 242 8.92
27 24.27 0.80 32.56 8.10 171 2.55
28 27.45 2.60 35.37 7.96 287 10.96
29 27.23 4.20 31.94 7.89 289 12.00
30 28.72 6.80 32.21 8.00 325 13.33
31 28.52 8.40 32.10 8.01 345 17.31
32 28.45 9.90 31.95 7.93 309 22.48
33 23.95 7.61 9.17 8.04 231 8.13
34 24.95 6.80 16.29 7.82 341 9.07
35 24.60 7.52 24.42 7.57 210 10.74
36 27.32 3.12 29.31 8.20 281 13.59
37 24.00 7.95 30.20 8.10 324 12.89
38 27.78 6.35 31.38 7.20 356 13.61
39 27.97 6.05 31.94 6.60 384 14.60
40 30.70 7.15 31.74 6.50 401 15.00
41 29.37 6.82 30.12 6.20 414 15.39
42 29.35 6.09 29.00 6.30 400 16.45
43 27.00 6.70 30.70 7.00 350 12.60
44 27.90 5.15 31.50 9.20 264 9.08
45 25.55 6.67 31.00 8.09 320 12.49
46 24.31 6.42 40.67 7.88 250 8.75
47 24.11 6.38 41.00 7.98 228 8.99
48 17.45 7.48 34.08 8.10 135 17.05
49 21.95 8.28 34.64 7.95 113 17.34
50 27.19 4.91 33.50 7.99 275 15.48
Table 1  Test data of marine corrosion[1]
Fig.3  Correlation of influencing factors
Serial number Real corrosion rateμAcm-2 Two input parameters Three input parameters BP artificial neural network
Predicted results μAcm-2 Relative error / % Predicted results / μAcm-2 Relative error / % Predicted results μAcm-2 Relative error / %
7 14.06 13.56 3.56 14.03 0.23 13.12 6.69
10 17.11 14.82 13.38 14.93 12.74 16.68 2.51
19 11.45 12.48 9.00 11.27 1.54 11.85 3.49
21 12.55 13.00 3.59 14.00 11.53 11.98 4.54
30 13.33 13.15 1.35 13.98 4.89 12.90 3.22
38 13.61 13.40 1.54 13.75 1.04 14.50 6.54
40 15.00 14.92 0.53 15.35 2.32 14.45 3.67
42 16.45 14.03 14.71 13.74 16.49 15.28 7.11
Table 2  Comparisons of the results predicted by FNN in this work and BP network in Ref.[1]
Fig.4  Comparisons of the results obtained by FNN andpractical testing
Neural network FNN
Two parameters Three parameters Four parameters Five parameters
Input vector dimensions 2 3 4 5
Number of hidden layer nodes 8 12 16 20
Convergence cycles 80 75 120 50
Training error / μAcm-2 2.25 2.43 1.98 2.23
Average prediction relative error / % 5.96 6.35 7.05 6.54
Table 3  Comparisons of various parameters in prediction testing
Fig.5  Comparisons of the relative error of test results
[1] Hu G.Study on submarine pipeline corrosion detection and corrosion prediction [D]. Chongqing: Chongqing University, 2007
[1] (胡舸. 海底管线腐蚀检测与腐蚀预测的研究 [D]. 重庆: 重庆大学, 2007)
[2] Piao Z D.The research of the corrosion forecast and control of FCC device and system [D]. Xi'an: Xi'an Shiyou University, 2012
[2] (朴在栋. 催化裂化装置及系统腐蚀预测与控制的研究 [D]. 西安: 西安石油大学, 2012)
[3] Hu S Q, Shi X, Hu J C, et al.BP neural network-based prediction model for internal corrosion rate of oil pipelines[J]. Oil Gas Storage Transp., 2010, 29(6): 448
[3] (胡松青, 石鑫, 胡建春等. 基于BP神经网络的输油管线内腐蚀速率预测模型[J]. 油气储运, 2010, 29(6): 448)
[4] Yang L, Bu W H, Gao L Q, et al.Prediction of corrosion rate of carbon steel in oilfield water using BP neuralnetwork[J]. Corros. Prot., 2008, 29(10): 631
[4] (杨凌, 卜文海, 高立群等. BP神经网络预测碳钢在油田水介质中的腐蚀速率[J]. 腐蚀与防护, 2008, 29(10): 631)
[5] Ren Z J.Research the corrosion factors of oil in pipeline and exploitation the residual life prediction software for oil pipeline [D]. Dongying: China University of Petroleum (East China), 2011
[5] (任振甲. 管输原油腐蚀特性研究及管线剩余寿命预测软件开发[D]. 东营: 中国石油大学, 2011)
[6] Ren Z J, Zhang J, Luo C S, et al.Influencing factors of crude oil corrosion based on artificial neural network[J]. Corros. Prot., 2011, 32(4): 293
[6] (任振甲, 张军, 骆成双等. 基于人工神经网络研究原油腐蚀的影响因素[J]. 腐蚀与防护, 2011, 32(4): 293)
[7] Yao Q K.Study of gas pipeline internal corrosion prediction in Moxi gas field [D]. Chengdu: Southwest Petroleum University, 2012
[7] (姚权珂. 磨溪气田集气管线内腐蚀预测方法研究 [D]. 成都: 西南石油大学, 2012)
[8] Wang C, Wang Z Y, Wei W, et al.Statistical analysis and predictive model in corrosion research[J]. J. Chin. Soc. Corros. Prot., 2010, 30(4): 306
[8] (汪川, 王振尧, 魏伟等. 腐蚀研究中的统计分析方法和预测模型[J]. 中国腐蚀与防护学报, 2010, 30(4): 306)
[9] Liu W, Zhao X M, Deng C L, et al.Grey neural network and its application to forecasting ocean-water corrosion[J]. J. Chin. Soc. Corros. Prot., 2008, 28(4): 201
[9] (刘威, 赵选民, 邓春龙等. 灰色神经网络模型在海水腐蚀预测中的应用[J]. 中国腐蚀与防护学报, 2008, 28(4): 201)
[10] Haque M E, Sudhakar K V.Prediction of corrosion fatigue behavior of DP steel through artificial neural network[J]. Int. J. Fatigue, 2001, 23(1): 1
[11] Kamrunnahar M, Urquidi-Macdonald M.Prediction of corrosion behavior using neural network as a data mining tool[J]. Corros. Sci., 2010, 52(3): 669
[12] Li H W.Research status review of fuzzy neural networks[J]. J. Liaoning Inst. Sci. Technol., 2010, 12(2): 15
[12] (李恒嵬. 模糊神经网络研究现状综述[J]. 辽宁科学院学报, 2010, 12(2): 15)
[13] Shi F, Wang X C, Yu L, et al.MATLAB Neural Network Analysis of 30 Cases [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2010
[13] (史峰, 王小川, 郁磊等. MATLAB神经网络30个案例分析 [M]. 北京: 北京航空航天大学出版社, 2010)
[1] Baohui GUO, Youxu QIU, Hailong LI. Application of Artificial Neural Network for Preparation Process of Ni-SiC Composite Coatings on Ti-Alloy TA15[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[2] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Review of Thermal Aging of Nuclear Grade Stainless Steels[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
[3] Yanan NIE,Hao SHEN,Kunpeng GU,Chengqi WANG. Seawater Corrosion Resistance and Service Life Prediction of Glass Fiber Reinforced Plastic Composites[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[4] Haixia LIU,Xuequn CHENG,Xiaogang LI,Kui XIAO,Chaofang DONG. Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.
[5] Xinsheng ZHANG,Naining CAO,Yayun LI. Residual Life Prediction of Buried Oil and Gas Pipelines Based on Gumbel Extreme Value Type I Distribution[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[6] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[7] Zhiping ZHU,Zhaohui YIN,Sen LIU,Jianfeng XIAO. Corrosion Behavior and Prediction Model for Copper Exposed in a Simulated High H2S Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[8] HAN Xiabing,GAO Zhiming,DANG Lihua,WANG Ying,BI Huichao. Wavelet Packet Analysis of Early Corrosion Image of Q235 Steel in Simulated Atmospheric Environment[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.
[9] LU Xiaofeng, ZHU Xiaolei, LING Xiang. A NOVEL MODEL FOR PREDICTING FLOW ACCELERATED CORROSION RATE IN REDUCER[J]. 中国腐蚀与防护学报, 2011, 31(6): 431-435.
[10] WENG Yongji. CORROSION PREDICTION AND BASIC CHEMOMETRICS[J]. 中国腐蚀与防护学报, 2011, 31(4): 245-249.
[11] ;. Gray Neural Network and Its Application to Forecasting Ocean-water Corrosion[J]. 中国腐蚀与防护学报, 2008, 28(4): 201-204 .
[12] . GREY COMBINATION MODEL APPLIES FOR PREDICTING ERODING VELOCITY OF PIPE[J]. 中国腐蚀与防护学报, 2008, 28(3): 173-176 .
[13] Haitao WANG; Enhou Han. PREDICTIVE MODEL FOR ATMOSPHERIC CORROSION OFALUMINIUM ALLOY BY ARTIFICIAL NEURAL NETWORK[J]. 中国腐蚀与防护学报, 2006, 26(5): 272-274 .
[14] Caifeng Liang. PREDICTION OF ATMOSPHERIC CORROSION FOR STEELS[J]. 中国腐蚀与防护学报, 2006, 26(3): 129-135 .
[15] Guoan Zhang; Changfeng Chen; Minxv Lu; Yinshun Wu. PREDICTION MODELS FOR CO2 CORROSION OF OIL AND GAS FIELDS[J]. 中国腐蚀与防护学报, 2005, 25(2): 119-123 .
No Suggested Reading articles found!