Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1659-1668     CSTR: 32134.14.1005.4537.2025.042      DOI: 10.11902/1005.4537.2025.042
  研究报告 本期目录 | 过刊浏览 |
细晶FH40船用低温钢在海水-海冰中耦合失效行为研究
孙士斌1, 高浩1, 常雪婷2(), 王东胜2()
1 上海海事大学物流工程学院 上海 201306
2 上海海事大学海洋科学与工程学院 上海 201306
Failure Behavior of Fine-grained FH40 Marine Low-temperature Steel in Conditions of Coupling Effect of Seawater-sea Ice
SUN Shibin1, GAO Hao1, CHANG Xueting2(), WANG Dongsheng2()
1 School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
2 School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
引用本文:

孙士斌, 高浩, 常雪婷, 王东胜. 细晶FH40船用低温钢在海水-海冰中耦合失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
Shibin SUN, Hao GAO, Xueting CHANG, Dongsheng WANG. Failure Behavior of Fine-grained FH40 Marine Low-temperature Steel in Conditions of Coupling Effect of Seawater-sea Ice[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1659-1668.

全文: PDF(8356 KB)   HTML
摘要: 

极地船舶航行过程中会由于冰载荷的作用导致涂料脱落,引起海冰摩擦、海水腐蚀同时发生的耦合作用。本文综合模拟人工海水腐蚀、海冰摩擦和电化学技术考察两种不同组织含量的FH40极地船用低温钢的腐蚀、磨损和摩擦腐蚀耦合行为,并使用白光干涉仪与扫描电子显微镜表征钢样的微观组织结构及磨损痕迹特征,开展海水海冰协同作用的钢材失效研究,为后续新型极地船用钢研发及应用提供支持。研究结果表明:相同条件下,随着钢材晶粒度增大,其摩擦系数和腐蚀速率有较大变化,在20 ℃空气中摩擦系数从0.28增加到0.35,而在海水介质中摩擦系数从0.23增加到0.25;在0 ℃时,空气介质摩擦系数从0.38增加到0.43,海水介质摩擦下系数从0.29增加到0.32;20 ℃海水浸泡时腐蚀速率分别为3.11 × 10-3和3.86 × 10-3 mm/a;在0 ℃海水浸泡实验时腐蚀速率分别变为2.11 × 10-3和2.76 × 10-3 mm/a。晶粒尺寸变细后能够强化材料硬度,增大材料位错运动阻碍和塑性变形抗力,使材料具有更强的耐磨损腐蚀性能。电化学腐蚀摩擦试验发现磨损痕迹的横截面宽度增加、磨损量上升、腐蚀电位向负方向移动,计算出由腐蚀引起的磨损增量WC和由磨损引起的腐蚀增量CW皆为正值,这些都为摩擦腐蚀相互耦合作用、互相促进提供有利的证明。

关键词 FH40船用低温钢海水腐蚀摩擦磨损电化学摩擦    
Abstract

During the voyage of polar ships, the coating of the ship's hull may peel off due to the erosive action of sea ice, thereby leading to the coupled effect of sea ice friction and seawater corrosion. Herein, the performance of FH40 polar marine low-temperature steel with two different microstructures in conditions of artificial sear-water corrosion, sea-ice wear and friction, as well as the coupling effect of sea-water corrosion and sea-ice friction at different temperatures was assessed via a simulation set, electrochemical techniques, in terms of the microstructure and the variation of wear trace characteristics for the test steels, as well as light interferometer and scanning electron microscope, in terms of the microstructure and wear trace characteristics of the test steels The results indicate that as the grain size of steel increases, there are significant changes in the friction coefficient and corrosion rate by the same test conditions, namely increasing from 0.28 to 0.35 for friction in air at 20 oC; from 0.23 to 0.25 for friction in artificial seawater at 20 oC; from 0.38 to 0.43 for friction in air at 0 oC; and from 0.29 to 0.32 for friction in artificial seawater at 0 oC; The corrosion rate increased from 3.11 × 10-3 to 3.86 × 10-3 mm/a in artificial seawater at 20 oC; However for immersion in artificial seawater at 0 oC the corrosion rate of the steel of fine grains is 2.11 × 10-3 mm/a, while that of coarser rise to 2.76 × 10-3 mm/a. This may be ascribed to that fine grains can result in higher hardness of the steel, increase the resistance to dislocation movement and plastic deformation, thus make the steel stronger wear- and corrosion-resistance. During friction test while free corrosion in artificial seawater of the steel, it was found that with the progress of corrosion process the cross-sectional width of wear marks increased, the wear amount increased, and the corrosion potential shifted to the negative direction. The calculated wear increment WC caused by corrosion and the corrosion increment CW caused by wear were both positive, providing favorable evidence for the coupling and mutual promotion of friction and corrosion.

Key wordsFH40 marine low-temperature steel    seawater corrosion    friction and wear    electrochemical friction
收稿日期: 2025-02-10      32134.14.1005.4537.2025.042
ZTFLH:  TG172  
基金资助:国家重点研发计划(2022YFB3705303);上海市科委技术标准项目(21DZ2205700);上海市教委“曙光”计划(19SG46);上海深海材料工程技术中心项目(19DZ2253100)
通讯作者: 常雪婷,E-mail:xtchang@shmtu.edu.cn,研究方向为海工与船舶用钢研发与应用王东胜,E-mail:wangds@shmtu.edu.cn,研究方向为金属材料低温性能
Corresponding author: CHANG Xueting, E-mail: xtchang@shmtu.edu.cnWANG Dongsheng, E-mail: wangds@shmtu.edu.cn
作者简介: 孙士斌,男,1982年生,教授
图1  2种FH40钢样的金相显微组织
SampleMass before experiment / gMass after experiment / gMass loss / gCorrosion rate / mm·a-1
A1 (20 oC)1.16781.15800.00983.86 × 10-3
1.17541.16620.00923.62 × 10-3
1.15491.14450.01044.10 × 10-3
A2 (20 oC)1.17251.16460.00793.11 × 10-3
1.15691.14940.00752.95 × 10-3
1.15941.15100.00843.30 × 10-3
A1 (0 oC)1.15501.14800.00702.76 × 10-3
1.17331.16570.00762.99 × 10-3
1.15621.15010.00612.40 × 10-3
A2 (0 oC)1.15781.15270.00512.11 × 10-3
1.17431.16880.00552.16 × 10-3
1.16251.15770.00481.89 × 10-3
表1  2种FH40钢样在不同温度下模拟海水中浸泡1200 h后的失重与腐蚀速率
图2  2种FH40钢样在0 ℃和20 ℃空气介质中摩擦系数
图3  2种FH40钢样在0 ℃和20 ℃海水介质中摩擦系数
图4  2种FH40钢样在无外加保护电位下摩擦前、摩擦中和摩擦后的开路电位
图5  2种FH40钢样在有、无外加保护电位下的摩擦系数
图6  2种FH40钢样在有、无外加保护电位下的动电位极化曲线
ParametersEcorr, SCE / VIcorr / μA·cm-2ba / mV·dec-1bc / mV·dec-1Crate / mm·a-1
-0.4 VA11.92 × 10-34.07 × 10-3-254.28173.954.28 × 10-3
A21.95 × 10-33.15 × 10-3-265.33226.803.42 × 10-3
OCPA12.01 × 10-37.19 × 10-3-200.15265.176.22 × 10-3
A22.08 × 10-36.35 × 10-3-215.52270.215.29 × 10-3
表2  2种FH40钢样在有无外加保护电位下的极化曲线拟合参数
图7  2种FH40钢样在有、无阴极保护下摩擦后磨痕三维形貌图
图8  2种FH40钢样在有、无阴极保护下摩擦后磨痕截面轮廓图
图9  2种FH40钢样在有、无保护电位下摩擦后磨痕形貌
SampleT / cm3W0 / cm3C0 / cm3WC / cm3CW / cm3W / cm3C / cm3S / cm3
A11.84 × 10-61.16 × 10-60.23 × 10-60.33 × 10-60.12 × 10-61.49 × 10-60.35 × 10-60.45 × 10-6
A21.58 × 10-61.03 × 10-60.18 × 10-60.27 × 10-60.10 × 10-61.30 × 10-60.28 × 10-60.37 × 10-6
表3  2种FH40钢样在海水中摩擦实验后的体积损失
图10  2种FH40钢样摩擦-腐蚀耦合作用因子
[1] Gautier D L, Bird K J, Charpentier R R, et al. Assessment of undiscovered oil and gas in the Arctic [J]. Science, 2009, 324: 1175
[2] Yu L W, Wang J R, Wang S Q, et al. Development strategy for polar equipment in China [J]. Strategic Study CAE, 2020, 22(6): 84
[2] (于立伟, 王俊荣, 王树青 等. 我国极地装备技术发展战略研究 [J]. 中国工程科学, 2020, 22(6): 84)
[3] Yang C F, Su H. Research and development of high performance shipbuilding and marine engineering steel [J]. Iron Steel, 2012, 47(12): 1
[3] (杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发 [J]. 钢铁, 2012, 47(12): 1)
[4] He Q Q, Xia X, Liu Y M. Research on the development trend of ice breaking technology of polar icebreaker [J]. China Water Transp., 2020, (6): 76
[4] (何纤纤, 夏 鑫, 刘雨鸣. 极地破冰船的破冰技术发展趋势研究 [J]. 中国水运, 2020, (6): 76)
[5] Zhang T Y, Liu W, Sun Y P, et al. Investigating the corrosion resistance of Cu-doped Ni-Mo low alloy steel through electrochemical tests [J]. Corros. Commun., 2023, 10: 10
[6] Wang L W, Ding Y, Lu Q K, et al. Microstructure and corrosion behavior of welded joint between 2507 super duplex stainless steel and E690 low alloy steel [J]. Corros. Commun., 2023, 11: 1
[7] Mao H Y, Cai Q W, Wu H B, et al. Effect of alloy element and carbon content on corrosion behavior of E36 ship plate steel [J]. Corros. Prot., 2013, 34: 499
[7] (毛红艳, 蔡庆伍, 武会宾 等. 合金元素和碳含量对E36船板钢腐蚀行为的影响 [J]. 腐蚀与防护, 2013, 34: 499)
[8] Chen C, Wu J J, Zhang D. Effects of sulfate-reducing bacteria on marine corrosion of weld joints of EH40 [J]. Equip. Environ. Eng., 2018, 15(10): 51
[8] (陈 超, 吴佳佳, 张 盾. 硫酸盐还原菌对EH40焊接钢海水腐蚀的影响 [J]. 装备环境工程, 2018, 15(10): 51)
[9] Ma L. Research on rolling wear and damage behavior of wheel-rail materials under low temperature environment [D]. Chengdu:Southwest Jiaotong University, 2017
[9] (马 蕾. 低温环境下轮轨材料滚动磨损与损伤行为研究[D].成都: 西南交通大学, 2017)
[10] Wu H, Li Y, Lu Y, et al. Influences of load and microstructure on tribocorrosion behaviour of high strength hull steel in saline solution [J]. Tribol. Lett., 2019, 67: 1
[11] Li J, Yang B B, Lu Y H, et al. The effects of electrochemical polarization condition and applied potential on tribocorrosion behaviors of Inconel 690 alloys in water environment [J]. Mater. Des., 2017, 119: 93
[12] Abreu D, Silva JR W, Ardila M, et al. Tribocorrosion in ferritic stainless steels: An improved methodological approach [J]. Mater.Res., 2021, 25: e20210179
[13] Alkan S, Gök M S. Effect of sliding wear and electrochemical potential on tribocorrosion behaviour of AISI 316 stainless steel in seawater [J]. Eng. Sci. Technol. Int. J., 2021, 24: 524
[14] Wang H Y, Zheng K H, Nong D. Study on manganese as a substitute for nickel and molybdenum in the medium-Cr alloy cast steel [J]. Foundry, 2012, 61: 1286
[14] (王海艳, 郑开宏, 农 登. 锰替代中铬合金铸钢中镍和钼的研究 [J]. 铸造, 2012, 61: 1286)
[15] Luo J, Zhang Y, Zhong Q D, et al. Influence of grain size on corrosion resistant of commonly used metals [J]. Corros. Prot., 2012, 33: 349
[15] (罗 检, 张 勇, 钟庆东 等. 晶粒度对一些常用金属耐腐蚀性能的影响 [J]. 腐蚀与防护, 2012, 33: 349)
[16] Shockley J M, Horton D J, Wahl K J. Effect of aging of 2507 super duplex stainless steel on sliding tribocorrosion in chloride solution [J]. Wear, 2017, 380-381: 251
[17] Zhu G K, Chen H Y, Fan L, et al. Low-temperature corrosion performance of laser-cladded Co-WB coatings in simulated seawater [J]. Strength Mater., 2024, 56: 155
[18] Wei C F, Fu L H, Du S M, et al. Effect of two-step isothermal quenching on martensite/bainite composite organization of GCr15Si1Mo bearing steel transformation and properties of GCr15Si1Mo bearing steel [J]. Bearing, 2025, 1551(34): 1
[18] (魏超凡, 傅丽华, 杜三明 等. 二步等温淬火对GCr15Si1Mo轴承钢马氏体/贝氏体复合组织转变及性能的影响 [J]. 轴承, 2025, 1551(34): 1)
[19] Qiu H, Dong Z, Feng L T, et al. Effect of laser energy density on wear and mechanical properties of FCC + BCC dual-phase eutectic high entropy alloy [J]. Mater. Res. Appl., 2025, 19: 155
[19] (邱 昊, 董 真, 封立同 等. 激光能量密度对FCC + BCC双相共晶高熵合金磨损性能与力学性能影响的研究 [J]. 材料研究与应用, 2025, 19: 155)
[20] Li L Y, Yan Z M, Liu Z C, et al. Research on friction and wear behavior of extruded Mg-Gd-Y-Zn-Zr alloys [J]. J. Ordnance Equip. Eng., 2024, 45(10): 116
[20] (李璐瑶, 闫钊鸣, 刘宗超 等. 挤压态Mg-Gd-Y-Zn-Zr合金摩擦磨损行为研究 [J]. 兵器装备工程学报, 2024, 45(10): 116)
[21] Luo X, Hong Y K, Wu J Y, et al. Effect of WC grain size of ultrafine WC-Co cemented carbide on its friction and wear properties [J]. Rare Met. Cemented Carbides, 2022, 50(3): 93
[21] (罗 鑫, 洪源昆, 吴佳逸 等. 超细硬质合金WC晶粒大小对其摩擦磨损性能的影响 [J]. 稀有金属与硬质合金, 2022, 50(3): 93)
[22] Papageorgiou N, Mischler S. Electrochemical simulation of the current and potential response in sliding tribocorrosion [J]. Tribol. Lett., 2012, 48: 271
[23] Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution [J]. Mater. Chem. Phys., 2011, 129: 138
[24] Wang X Z, Jiang Y H, Wang Y F, et al. Probing the tribocorrosion behaviors of three nickel-based superalloys in sodium chloride solution [J]. Tribol. Int., 2022, 172: 107581
[25] Nyrkova L I, Osadchuk S O, Klymenko A V, et al. Influence of the corrosiveness of a medium on the ratio of the cathodic protection current to the ultimate diffusion current for KH70 pipe steel [J]. Mater. Sci., 2020, 56: 417
[26] Wang D, Xie F, Wu M, et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential [J]. Int. J. Hydrogen Energy, 2017, 42: 27206
[27] Fan Y L, Wen H X, Han F, et al. Electrochemical corrosion and friction behavior of TC4 alloy in H2SO4 solution [J]. J. Funct. Mater., 2020, 51: 11200
[27] (樊亚龙, 文怀兴, 韩 昉 等. 硫酸溶液中TC4合金电化学腐蚀与摩擦行为研究 [J]. 功能材料, 2020, 51: 11200)
[28] Qian A, Yang X H, Jin P, et al. Micro-zone electrochemical behavior of AerMet100 steel in salt spray environment under Cl- [J]. Equip. Environ. Eng., 2019, 16(10): 88
[28] (钱 昂, 杨晓华, 金 平 等. Cl-作用下AerMet100钢在盐雾环境中的微区电化学行为 [J]. 装备环境工程, 2019, 16(10): 88)
[29] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
[29] (曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008)
[1] 冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[2] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[3] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[4] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[5] 周文晖, 宋健, 陈泽浩, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 水热腐蚀老化对热障涂层的摩擦磨损性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[6] 孙士斌, 赵子铭, 高珍鹏, 宫旭辉, 王东胜, 强强, 常雪婷. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 69-76.
[7] 张彭辉, 李显超, 仝宏涛, 张宇, 陈诚. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1075-1080.
[8] 类延华, 刘宁轩, 张玉良, 常雪婷, 刘涛. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[9] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[10] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[11] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[12] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[13] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[14] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[15] 刘胤, 刘时美, 于鲁萍, 刘军, 姜伟. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 99-105.