|
|
|
| 细晶FH40船用低温钢在海水-海冰中耦合失效行为研究 |
孙士斌1, 高浩1, 常雪婷2( ), 王东胜2( ) |
1 上海海事大学物流工程学院 上海 201306 2 上海海事大学海洋科学与工程学院 上海 201306 |
|
| Failure Behavior of Fine-grained FH40 Marine Low-temperature Steel in Conditions of Coupling Effect of Seawater-sea Ice |
SUN Shibin1, GAO Hao1, CHANG Xueting2( ), WANG Dongsheng2( ) |
1 School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China 2 School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
引用本文:
孙士斌, 高浩, 常雪婷, 王东胜. 细晶FH40船用低温钢在海水-海冰中耦合失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
Shibin SUN,
Hao GAO,
Xueting CHANG,
Dongsheng WANG.
Failure Behavior of Fine-grained FH40 Marine Low-temperature Steel in Conditions of Coupling Effect of Seawater-sea Ice[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1659-1668.
| [1] |
Gautier D L, Bird K J, Charpentier R R, et al. Assessment of undiscovered oil and gas in the Arctic [J]. Science, 2009, 324: 1175
|
| [2] |
Yu L W, Wang J R, Wang S Q, et al. Development strategy for polar equipment in China [J]. Strategic Study CAE, 2020, 22(6): 84
|
| [2] |
(于立伟, 王俊荣, 王树青 等. 我国极地装备技术发展战略研究 [J]. 中国工程科学, 2020, 22(6): 84)
|
| [3] |
Yang C F, Su H. Research and development of high performance shipbuilding and marine engineering steel [J]. Iron Steel, 2012, 47(12): 1
|
| [3] |
(杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发 [J]. 钢铁, 2012, 47(12): 1)
|
| [4] |
He Q Q, Xia X, Liu Y M. Research on the development trend of ice breaking technology of polar icebreaker [J]. China Water Transp., 2020, (6): 76
|
| [4] |
(何纤纤, 夏 鑫, 刘雨鸣. 极地破冰船的破冰技术发展趋势研究 [J]. 中国水运, 2020, (6): 76)
|
| [5] |
Zhang T Y, Liu W, Sun Y P, et al. Investigating the corrosion resistance of Cu-doped Ni-Mo low alloy steel through electrochemical tests [J]. Corros. Commun., 2023, 10: 10
|
| [6] |
Wang L W, Ding Y, Lu Q K, et al. Microstructure and corrosion behavior of welded joint between 2507 super duplex stainless steel and E690 low alloy steel [J]. Corros. Commun., 2023, 11: 1
|
| [7] |
Mao H Y, Cai Q W, Wu H B, et al. Effect of alloy element and carbon content on corrosion behavior of E36 ship plate steel [J]. Corros. Prot., 2013, 34: 499
|
| [7] |
(毛红艳, 蔡庆伍, 武会宾 等. 合金元素和碳含量对E36船板钢腐蚀行为的影响 [J]. 腐蚀与防护, 2013, 34: 499)
|
| [8] |
Chen C, Wu J J, Zhang D. Effects of sulfate-reducing bacteria on marine corrosion of weld joints of EH40 [J]. Equip. Environ. Eng., 2018, 15(10): 51
|
| [8] |
(陈 超, 吴佳佳, 张 盾. 硫酸盐还原菌对EH40焊接钢海水腐蚀的影响 [J]. 装备环境工程, 2018, 15(10): 51)
|
| [9] |
Ma L. Research on rolling wear and damage behavior of wheel-rail materials under low temperature environment [D]. Chengdu:Southwest Jiaotong University, 2017
|
| [9] |
(马 蕾. 低温环境下轮轨材料滚动磨损与损伤行为研究[D].成都: 西南交通大学, 2017)
|
| [10] |
Wu H, Li Y, Lu Y, et al. Influences of load and microstructure on tribocorrosion behaviour of high strength hull steel in saline solution [J]. Tribol. Lett., 2019, 67: 1
|
| [11] |
Li J, Yang B B, Lu Y H, et al. The effects of electrochemical polarization condition and applied potential on tribocorrosion behaviors of Inconel 690 alloys in water environment [J]. Mater. Des., 2017, 119: 93
|
| [12] |
Abreu D, Silva JR W, Ardila M, et al. Tribocorrosion in ferritic stainless steels: An improved methodological approach [J]. Mater.Res., 2021, 25: e20210179
|
| [13] |
Alkan S, Gök M S. Effect of sliding wear and electrochemical potential on tribocorrosion behaviour of AISI 316 stainless steel in seawater [J]. Eng. Sci. Technol. Int. J., 2021, 24: 524
|
| [14] |
Wang H Y, Zheng K H, Nong D. Study on manganese as a substitute for nickel and molybdenum in the medium-Cr alloy cast steel [J]. Foundry, 2012, 61: 1286
|
| [14] |
(王海艳, 郑开宏, 农 登. 锰替代中铬合金铸钢中镍和钼的研究 [J]. 铸造, 2012, 61: 1286)
|
| [15] |
Luo J, Zhang Y, Zhong Q D, et al. Influence of grain size on corrosion resistant of commonly used metals [J]. Corros. Prot., 2012, 33: 349
|
| [15] |
(罗 检, 张 勇, 钟庆东 等. 晶粒度对一些常用金属耐腐蚀性能的影响 [J]. 腐蚀与防护, 2012, 33: 349)
|
| [16] |
Shockley J M, Horton D J, Wahl K J. Effect of aging of 2507 super duplex stainless steel on sliding tribocorrosion in chloride solution [J]. Wear, 2017, 380-381: 251
|
| [17] |
Zhu G K, Chen H Y, Fan L, et al. Low-temperature corrosion performance of laser-cladded Co-WB coatings in simulated seawater [J]. Strength Mater., 2024, 56: 155
|
| [18] |
Wei C F, Fu L H, Du S M, et al. Effect of two-step isothermal quenching on martensite/bainite composite organization of GCr15Si1Mo bearing steel transformation and properties of GCr15Si1Mo bearing steel [J]. Bearing, 2025, 1551(34): 1
|
| [18] |
(魏超凡, 傅丽华, 杜三明 等. 二步等温淬火对GCr15Si1Mo轴承钢马氏体/贝氏体复合组织转变及性能的影响 [J]. 轴承, 2025, 1551(34): 1)
|
| [19] |
Qiu H, Dong Z, Feng L T, et al. Effect of laser energy density on wear and mechanical properties of FCC + BCC dual-phase eutectic high entropy alloy [J]. Mater. Res. Appl., 2025, 19: 155
|
| [19] |
(邱 昊, 董 真, 封立同 等. 激光能量密度对FCC + BCC双相共晶高熵合金磨损性能与力学性能影响的研究 [J]. 材料研究与应用, 2025, 19: 155)
|
| [20] |
Li L Y, Yan Z M, Liu Z C, et al. Research on friction and wear behavior of extruded Mg-Gd-Y-Zn-Zr alloys [J]. J. Ordnance Equip. Eng., 2024, 45(10): 116
|
| [20] |
(李璐瑶, 闫钊鸣, 刘宗超 等. 挤压态Mg-Gd-Y-Zn-Zr合金摩擦磨损行为研究 [J]. 兵器装备工程学报, 2024, 45(10): 116)
|
| [21] |
Luo X, Hong Y K, Wu J Y, et al. Effect of WC grain size of ultrafine WC-Co cemented carbide on its friction and wear properties [J]. Rare Met. Cemented Carbides, 2022, 50(3): 93
|
| [21] |
(罗 鑫, 洪源昆, 吴佳逸 等. 超细硬质合金WC晶粒大小对其摩擦磨损性能的影响 [J]. 稀有金属与硬质合金, 2022, 50(3): 93)
|
| [22] |
Papageorgiou N, Mischler S. Electrochemical simulation of the current and potential response in sliding tribocorrosion [J]. Tribol. Lett., 2012, 48: 271
|
| [23] |
Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution [J]. Mater. Chem. Phys., 2011, 129: 138
|
| [24] |
Wang X Z, Jiang Y H, Wang Y F, et al. Probing the tribocorrosion behaviors of three nickel-based superalloys in sodium chloride solution [J]. Tribol. Int., 2022, 172: 107581
|
| [25] |
Nyrkova L I, Osadchuk S O, Klymenko A V, et al. Influence of the corrosiveness of a medium on the ratio of the cathodic protection current to the ultimate diffusion current for KH70 pipe steel [J]. Mater. Sci., 2020, 56: 417
|
| [26] |
Wang D, Xie F, Wu M, et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential [J]. Int. J. Hydrogen Energy, 2017, 42: 27206
|
| [27] |
Fan Y L, Wen H X, Han F, et al. Electrochemical corrosion and friction behavior of TC4 alloy in H2SO4 solution [J]. J. Funct. Mater., 2020, 51: 11200
|
| [27] |
(樊亚龙, 文怀兴, 韩 昉 等. 硫酸溶液中TC4合金电化学腐蚀与摩擦行为研究 [J]. 功能材料, 2020, 51: 11200)
|
| [28] |
Qian A, Yang X H, Jin P, et al. Micro-zone electrochemical behavior of AerMet100 steel in salt spray environment under Cl- [J]. Equip. Environ. Eng., 2019, 16(10): 88
|
| [28] |
(钱 昂, 杨晓华, 金 平 等. Cl-作用下AerMet100钢在盐雾环境中的微区电化学行为 [J]. 装备环境工程, 2019, 16(10): 88)
|
| [29] |
Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
|
| [29] |
(曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|