|
|
|
| 一种新型含铜钛合金的制备与抗菌性能研究 |
邓艳1, 彭子飘2, 刘毅超3,4, 钟显康5( ) |
1 西南石油大学石油与天然气工程学院 成都 610500 2 中国石油塔里木油田分公司 库尔勒 841000 3 川庆钻探工程有限公司安全环保质量监督检测研究院 德阳 618300 4 四川科特检测技术有限公司 德阳 618300 5 西安交通大学化学工程与技术学院 西安 710049 |
|
| Preparation and Antimicrobial Properties of a Novel Cu-containing Ti-alloy |
DENG Yan1, PENG Zipiao2, LIU Yichao3,4, ZHONG Xiankang5( ) |
1 College of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China 2 Supervision Center, PetroChina Tarim Oilfield Branch, Korla 841000, China 3 Safety, Environmental Protection and Quality Supervision and Inspection Research Institute of Sichuan Qing Drilling and Exploration Engineering Co. Ltd. , Deyang 618300, China 4 Sichuan Cote Testing Technology Co. Ltd. , Deyang 618300, China 5 College of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
Yan DENG,
Zipiao PENG,
Yichao LIU,
Xiankang ZHONG.
Preparation and Antimicrobial Properties of a Novel Cu-containing Ti-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1649-1658.
| [1] |
Smith J E, Chandler R B, Boster P L. Titanium drill pipe for ultra-deep and deep directional drilling [A]. SPE/IADC Drilling Conference [C]. Amsterdam, 2001
|
| [2] |
Pye D S, Holligan D, Cron C J, et al. The use of beta-c titanium for downhole production casing in geothermal wells [J]. Geothermics, 1989, 18: 259
|
| [3] |
Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry [J]. Mater. Sci. Eng., 1998, 243A: 305
|
| [4] |
Kane R D, Craig S, Venkatesh A. Titanium alloys for oil and gas service: A review [A]. Proceedings of the Corrosion 2009 [C]. Atlanta, 2009
|
| [5] |
Smith J, Jellison M, Wilson G, et al. Titanium drill pipe a viable option for short-radius horizontal drilling [Z]. Drilling Contractor, 2000, 34
|
| [6] |
Ronold K O, Stig W. Characteristic S-N curves for fatigue design of titanium risers [J]. OMAE, 2002. DOI: 10.1115/OMAE2002-28475
|
| [7] |
StandardInternational. Petroleum and natural gas industries-Materials for use in H2S-containing environments in oil and gas production-Part 3: cracking-resistant CRAs (corrosion-resistant alloys) and other alloys [S]. ISO, 2020
|
| [8] |
Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
|
| [8] |
(张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795)
|
| [9] |
Li X, Shang D Z, Yu H B, et al. Research progress on oil & gas pipeline corrosion induced by SRB [J]. Surf. Technol., 2021, 50(2): 211
|
| [9] |
(李 鑫, 尚东芝, 于浩波 等. 油气管道SRB腐蚀研究新进展 [J]. 表面技术, 2021, 50(2): 211)
|
| [10] |
Liu W, Li H L, Wu H X, et al. Mechanism of microbial film formation and its effect on material corrosion [J]. Global Mark., 2020, (17): 368
|
| [10] |
(刘 伟, 李洪林, 吴海旭 等. 微生物膜的形成机制及其对材料腐蚀的影响 [J]. 环球市场, 2020, (17): 368)
|
| [11] |
Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion of metal materials and its prevention [J]. Equip. Environ. Eng., 2015, 12(1): 59
|
| [11] |
(杨家东, 许凤玲, 侯 健 等. 金属材料的微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2015, 12(1): 59)
|
| [12] |
Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
|
| [12] |
(史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153)
|
| [13] |
Cluff M A, Hartsock A, MacRae J D, et al. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells [J]. Environ. Sci. Technol., 2014, 48: 6508
|
| [14] |
Mohan A M, Hartsock A, Bibby K J, et al. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction [J]. Environ. Sci. Technol., 2013, 47: 13141
|
| [15] |
Struchtemeyer C G, Davis J P, Elshahed M S. Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett shale [J]. Appl. Environ. Microbiol., 2011, 77: 4744
|
| [16] |
Mao T, Yang H, Shi L. Analysis on corrosion of ground pipeline in Weiyuan shale gas field [J]. Chin. Eng. Oil Gas, 2019, 48(5): 83
|
| [16] |
(毛 汀, 杨 航, 石 磊. 威远页岩气田地面管线腐蚀原因分析 [J]. 石油与天然气化工, 2019, 48(5): 83)
|
| [17] |
Wang J W. Study on microstructure and properties of antibacterial Ti-Cu alloy [D]. Hefei: University of Science and Technology of China, 2019
|
| [17] |
(王杰闻. 抗菌Ti-Cu合金的组织与性能研究 [D]. 合肥: 中国科学技术大学, 2019)
|
| [18] |
Kolawole S K. Design and development of a novel antibacterial Cu-bearing TiZr-based alloy for biomedical applications [D]. Hefei: University of Science and Technology of China, 2021
|
| [18] |
(Kolawole S K. 新型医用抗菌含铜钛锆基合金的设计与开发 [D]. 合肥: 中国科学技术大学, 2021)
|
| [19] |
Peng C. Study on performance optimization of biomedical antibacterial Ti6AI4V-xCu alloy [D]. Hefei: University of Science and Technology of China, 2019
|
| [19] |
(彭 聪. 生物医用抗菌Ti6Al4V-xCu合金的性能优化研究 [D]. 合肥: 中国科学技术大学, 2019)
|
| [20] |
Chen M. Preparation of antibacterial Ti-Ag alloys and the effect of Ag existence form on the antibacterial property [D]. Shenyang: Northeastern University, 2015
|
| [20] |
(陈 棉. 抗菌Ti-Ag合金的制备及Ag的存在形式对抗菌性能的影响 [D]. 沈阳: 东北大学, 2015)
|
| [21] |
Puckett S D, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment [J]. Biomaterials, 2010, 31: 706
|
| [22] |
Wang Z Q. Study of surface modification by Ag/Cu ion implantation into medical metallic materials [D]. Tianjin: Tianjin University, 2006
|
| [22] |
(王紫琴. Ag、Cu离子注入医用金属材料表面改性研究 [D]. 天津: 天津大学, 2006)
|
| [23] |
Inoue Y, Uota M, Torikai T, et al. Antibacterial properties of nanostructured silver titanate thin films formed on a titanium plate [J]. J. Biomed. Mater. Res., 2010, 92A: 1171
|
| [24] |
Rao T S, Kora A J, Anupkumar B, et al. Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris) [J]. Corros. Sci., 2005, 47: 1071
|
| [25] |
Ma Z. Preparations and properties of antibacterial Cu-bearing biomedical titanium alloys [D]. Dalian: Dalian University of Technology, 2015
|
| [25] |
(马 政. 新型含铜抗菌钛合金的制备与性能研究 [D]. 大连: 大连理工大学, 2015)
|
| [26] |
Zhang E L, Wang X Y, Chen M, et al. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application [J]. Mater. Sci. Eng., 2016, 69C: 1210
|
| [27] |
Cai D G, Zhao X T, Yang L, et al. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81: 13
|
| [28] |
NACE TM0194 Field monitoring of bacterial growth in oil and gas systems [S]. NACE, 2014
|
| [29] |
Yin L. Study on the performances of a new type of duplex stainless steel with high resistance to sulfate reducing bacteria induced corrosion [D]. Hefei: University of Science and Technology of China, 2021
|
| [29] |
(尹 路. 新型耐硫酸盐还原菌腐蚀双相不锈钢的性能研究 [D]. 合肥: 中国科学技术大学, 2021)
|
| [30] |
Li H N, Zhong X K, Hu J Y, et al. The inhibition of sulfate reducing bacteria adhesion and corrosion on the carbon steel surface using ZnO particles [J]. J. Adhes. Sci. Technol., 2023, 37: 270
|
| [31] |
Despax B, Saulou C, Raynaud P, et al. Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae [J]. Nanotechnology, 2011, 22: 175101
|
| [32] |
Deng Y, Wang L L, Chen Y J, et al. Optimization of staining with SYTO 9/propidium iodide: interplay, kinetics and impact on Brevibacillus brevis [J]. BioTechniques, 2020, 69: 88
|
| [33] |
Deng Y. Optimization of bacterial cell viability assays with the fluorophores SYTO 9 and propidium iodide and its mechanism based on flow cytometry [D]. Guangzhou: Jinan University, 2020
|
| [33] |
(邓 颖. 基于流式细胞术的SYTO 9/PI细菌活性判定方法优化及其机理 [D]. 广州: 暨南大学, 2020)
|
| [34] |
Li L L. Study on microbial corrosion behaviour of coiled tebing [D]. Xi'an: Xi'an Shiyou University, 2022
|
| [34] |
(李磊磊. 连续管的微生物腐蚀行为研究 [D]. 西安: 西安石油大学, 2022)
|
| [35] |
Tkacz J, Minda J, Fintová S, et al. Comparison of electrochemical methods for the evaluation of cast AZ91 magnesium alloy [J]. Materials, 2016, 9: 925
|
| [36] |
Huang G T, Chan K Y, Fang H H P. Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater [J]. J. Electrochem. Soc., 2004, 151: B434
|
| [37] |
Javadian S, Yousefi A, Neshati J. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5%NaCl [J]. Appl. Surf. Sci., 2013, 285: 674
|
| [38] |
Jin G D, Qin H, Cao H L, et al. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium [J]. Biomaterials, 2014, 35: 7699
|
| [39] |
Yin L, Xu D K, Yang C G, et al. Effect of Cu and Ag on microbiologically influenced corrosion resistance of 2205 duplex stainless steel in sulfate reducing bacteria [J]. Surf. Technol., 2019, 48(7): 316
|
| [39] |
(尹 路, 徐大可, 杨春光 等. 银、铜复合添加对2205双相不锈钢耐硫酸盐还原菌腐蚀行为的影响 [J]. 表面技术, 2019, 48(7): 316)
|
| [40] |
Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
|
| [41] |
Burghardt I, Lüthen F, Prinz C, et al. A dual function of copper in designing regenerative implants [J]. Biomaterials, 2015, 44: 36
|
| [42] |
Warnes S L, Caves V, Keevil C W. Mechanism of copper surface toxicity in Escherichia coli O157: H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria [J]. Environ. Microbiol., 2012, 14: 1730
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|