|
|
|
| 三嗪季铵盐基高温高压CO2 缓蚀剂及缓蚀性能研究 |
邬春生1, 张天永1, 李彬1, 苑文英1, 张霄鸥1, 姜爽1,2( ), 汪怀远1,2( ) |
1 天津大学化工学院 天津 300354 2 宁波市绿色石化碳减排技术与装备重点实验室 宁波 315000 |
|
| Corrosion Inhibition Performance of Triazine-derived Quaternary Ammonium Salts for Q235 Carbon Steel in High Temperature and High Pressure CO2 Containing 3.5%NaCl Solution |
WU Chunsheng1, ZHANG Tianyong1, LI Bin1, YUAN Wenying1, ZHANG Xiaoou1, JIANG Shuang1,2( ), WANG Huaiyuan1,2( ) |
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China 2 Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo 315000, China |
引用本文:
邬春生, 张天永, 李彬, 苑文英, 张霄鸥, 姜爽, 汪怀远. 三嗪季铵盐基高温高压CO2 缓蚀剂及缓蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1639-1648.
Chunsheng WU,
Tianyong ZHANG,
Bin LI,
Wenying YUAN,
Xiaoou ZHANG,
Shuang JIANG,
Huaiyuan WANG.
Corrosion Inhibition Performance of Triazine-derived Quaternary Ammonium Salts for Q235 Carbon Steel in High Temperature and High Pressure CO2 Containing 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1639-1648.
| [1] |
Yang T, Xu L, Wang J C, et al. Research progress on CO2 corrosion and protective countermeasures for oil casing [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1134
|
| [1] |
(杨 涛, 许 磊, 王建春 等. 油套管CO2腐蚀和防护研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1134)
|
| [2] |
Zhang Q H, Hou B S, Xu N, et al. Two novel thiadiazole derivatives as highly efficient inhibitors for the corrosion of mild steel in the CO2-saturated oilfield produced water [J]. J. Taiwan Inst. Chem. Eng., 2019, 96: 588
|
| [3] |
Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J]. Int. J. Greenh. Gas Con., 2014, 31: 48
|
| [4] |
Rangaswamy V M, Keshavayya J. Anticorrosive ability of cycloheximide on mild steel corrosion in 0.5 M H2SO4 solution [J]. Chem. Data Collect., 2022, 37: 100795
|
| [5] |
Firdhouse M J, Nalini D. Corrosion inhibition of mild steel in acidic media by 5′-phenyl-2′, 4′-dihydrospiro [indole-3, 3′-pyrazol]-2(1H)-one [J]. J. Chem., 2013, 2013: 835365
|
| [6] |
Zhao L C, Ma Z H, Sun Y T, et al. Performance of corrosion inhibitor in high temperature multi-component thermal fluid [J]. Corros. Prot., 2013, 34: 64
|
| [6] |
(赵利昌, 马增华, 孙永涛 等. 高温多元热流体注采缓蚀剂的性能 [J]. 腐蚀与防护, 2013, 34: 64)
|
| [7] |
Zhang J, Sun X J, Ren Y M, et al. The synergistic effect between imidazoline-based dissymmetric bis-quaternary ammonium salts and thiourea against CO2 corrosion at high temperature [J]. J. Surfact. Deterg., 2015, 18: 981
|
| [8] |
Cao S Y, Liu D, Ding H, et al. Corrosion inhibition effects of a novel ionic liquid with and without potassium iodide for carbon steel in 0.5 M HCl solution: An experimental study and theoretical calculation [J]. J. Mol. Liquids, 2019, 275: 729
|
| [9] |
Wu H, Deng S D, Li X H. Synergistic inhibition effect of cuscuta chinensis lam extract and potassium iodide on cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 77
|
| [9] |
(吴 浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 77)
|
| [10] |
Wang P J, Song Y H, Fan L, et al. Inhibition of Q235 steel in 1 mol/L HCl solution by a new efficient imidazolium schiff base corrosion inhibitor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 59
|
| [10] |
(王鹏杰, 宋昱灏, 樊 林 等. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 59)
|
| [11] |
Zhang C, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and sodium dodecyl sulfate in CO2 system. [J]. Acta Phys-Chim. Sin., 2014, 30: 677
|
| [11] |
(张 晨, 赵景茂. CO2体系中咪唑啉季铵盐与十二烷基磺酸钠之间的缓蚀协同效应 [J]. 物理化学学报, 2014, 30: 677)
|
| [12] |
Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
|
| [13] |
Qiang Y J, Li H, Lan X J. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52: 63
|
| [14] |
Zhang Q H, Hou B S, Li Y Y, et al. Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution [J]. Corros. Sci., 2020, 164: 108346
|
| [15] |
Ansari K R, Chauhan D S, Quraishi M A, et al. Bis(2-aminoethyl) amine-modified graphene oxide nanoemulsion for carbon steel protection in 15%HCl: Effect of temperature and synergism with iodide ions [J]. J. Colloid Interf. Sci., 2020, 564: 124
|
| [16] |
Zhang Q, Guo L, Huang Y, et al. Influence of an imidazole-based ionic liquid as electrolyte additive on the performance of alkaline Al-air battery [J]. J. Power Sources, 2023, 564: 232901
|
| [17] |
Zhu M Y, He Z Y, Guo L, et al. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation [J]. J. Mol. Liq., 2021, 342: 117583
|
| [18] |
Cen H Y, Cao J J, Chen Z Y. Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2020, 177: 109011
|
| [19] |
Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids [J]. J. Am. Chem. Soc., 1916, 38: 2221
|
| [20] |
Singh A, Ansari K R, Chauhan D S, et al. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15%HCl medium [J]. J. Colloid Interf. Sci., 2020, 560: 225
|
| [21] |
Pareek S, Jain D, Hussain S, et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5wt.%NaCl solution by eco-friendly imidazopyrimidine dye: Experimental and theoretical approach [J]. Chem. Eng. J., 2019, 358: 725
|
| [22] |
Feng L, Zhang S T, Zheng S Y, et al. Effect of halogen anions on corrosion inhibition of ionic liquids [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 791
|
| [22] |
(冯 丽, 张胜涛, 郑思远 等. 卤素阴离子对离子液体缓蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 791)
|
| [23] |
Wang X T, Yang J, Chen X. 2-Benzylsulfanyl-1H-benzimidazole and its mixture as highly efficient corrosion inhibitors for carbon steel under dynamic supercritical CO2 flow conditions [J]. Corros. Sci., 2024, 235: 112170
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|