Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1639-1648     CSTR: 32134.14.1005.4537.2025.053      DOI: 10.11902/1005.4537.2025.053
  研究报告 本期目录 | 过刊浏览 |
三嗪季铵盐基高温高压CO2 缓蚀剂及缓蚀性能研究
邬春生1, 张天永1, 李彬1, 苑文英1, 张霄鸥1, 姜爽1,2(), 汪怀远1,2()
1 天津大学化工学院 天津 300354
2 宁波市绿色石化碳减排技术与装备重点实验室 宁波 315000
Corrosion Inhibition Performance of Triazine-derived Quaternary Ammonium Salts for Q235 Carbon Steel in High Temperature and High Pressure CO2 Containing 3.5%NaCl Solution
WU Chunsheng1, ZHANG Tianyong1, LI Bin1, YUAN Wenying1, ZHANG Xiaoou1, JIANG Shuang1,2(), WANG Huaiyuan1,2()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
2 Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo 315000, China
引用本文:

邬春生, 张天永, 李彬, 苑文英, 张霄鸥, 姜爽, 汪怀远. 三嗪季铵盐基高温高压CO2 缓蚀剂及缓蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1639-1648.
Chunsheng WU, Tianyong ZHANG, Bin LI, Wenying YUAN, Xiaoou ZHANG, Shuang JIANG, Huaiyuan WANG. Corrosion Inhibition Performance of Triazine-derived Quaternary Ammonium Salts for Q235 Carbon Steel in High Temperature and High Pressure CO2 Containing 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1639-1648.

全文: PDF(6265 KB)   HTML
摘要: 

以三氯三嗪、正二丙胺和溴乙酰胺为原料合成得到酰胺基均三嗪季铵盐(CCDY)缓蚀剂,将其与硫脲(TU)和钨酸钠复配,通过静态失重实验和正交试验法得到最佳复配比例的高温高压CO2缓蚀剂,命名为CTLY。通过电化学实验、表面形貌分析和量子化学计算等方法系统地探究了CTLY在90 ℃、0.5 MPa CO2、3.5%NaCl溶液中对Q235钢的缓蚀性能及缓蚀机理。结果表明,CTLY对Q235钢的缓蚀率可达到96.64%。CTLY在Q235钢表面符合Langmuir吸附等温式,属于以化学吸附为主的混合吸附。电化学实验表明CTLY属于以抑制阳极反应为主的混合抑制型缓蚀剂。Nyquist图呈现单一半圆弧。表面形貌分析进一步说明CTLY具有较好的缓蚀效果。

关键词 均三嗪季铵盐高温高压正交试验法CO2缓蚀剂    
Abstract

Amido-group triazine quaternary ammonium salt (CCDY) corrosion inhibitor was synthesized by nucleophilic substitution reaction and quaternary ammonium reaction with trichlorotriazine, dipropylamine and bromoacetamide as raw material. Then which was compounded with thiourea (TU) and sodium tungstate to acquire the complex inhibitor of optimal proportion, which was named CTLY. Next, the corrosion inhibition performance of the complex corrosion inhibitor CTLY for Q235 steel was assessed via static immersion test at 90 oC in 0.5 MPa CO2 containing 3.5%NaCl solution, accord with an orthogonal test arrangement, as well as electrochemical tests, surface morphology analysis and quantum chemical calculations. The results show that the corrosion inhibition rate of CTLY for Q235 steel can reach 96.64%. CTLY conforms to the Langmuir adsorption isothermal formula on the surface of Q235 steel, and the standard adsorption Gibbs free energy (ΔG0) is between -20 and -40 kJ/mol, correspondingly which is a mixed adsorption dominated by chemical adsorption. Electrochemical tests showed that CTLY was a mixed inhibitory corrosion inhibitor, while mainly inhibiting the anode reaction. The Nyquist plot shows a single-half arc, and the charge transfer impedance increases significantly with the increase of CTLY concentration. The surface morphology analysis further showed that CTLY had a good corrosion inhibition effect.

Key wordstriazine quaternary ammonium salt    high temperature and high pressure    orthogonal test method    CO2 corrosion inhibitor
收稿日期: 2025-02-18      32134.14.1005.4537.2025.053
ZTFLH:  TG174  
基金资助:宁波市重点实验室开放基金(ZITJU2024-ZYDK037)
通讯作者: 姜爽,E-mail:shuangjiang@tju.edu.cn,研究方向为金属腐蚀与防护汪怀远,E-mail:wanghyjiji@163.com,研究方向为金属腐蚀与防护
Corresponding author: JIANG Shuang, E-mail: shuangjiang@tju.edu.cnWANG Huaiyuan, E-mail: wanghyjiji@163.com
作者简介: 邬春生,男,2001年生,硕士生
图1  CCDY缓蚀剂的合成路线
图2  CCDY的FTIR谱图
图3  CCDY的核磁氢谱和碳谱
图4  不同浓度CCDY的缓蚀率
图5  CCDY复配不同增效剂的缓蚀率
LevelABC
CCDYTUNa2WO4
12007525
222510050
325012575
表1  缓蚀性能主要影响因素和其水平
No.ABCη / %
111192.53
221391.73
331290.40
412396.64
522292.79
632192.94
713290.40
823191.72
933392.66
K1279.57274.66277.19
K2276.24282.37273.59
K3276.00274.78281.03
k193.1991.5592.40
k292.0894.1291.20
k392.0091.5993.68
R1.192.572.48
表2  L9 (34)正交试验数据及分析
图6  Q235钢在80 ℃下含CCDY及复配缓蚀剂的0.5 MPa CO2、3.5%NaCl溶液中的极化曲线
InhibitorEcorr / mVIcorr / μA·cm-2η / %
Blank-0.695150.4-
CCDY-0.67535.476.46
CTLY-0.66211.792.22
表3  图6中极化曲线拟合结果
图7  Q235钢在含不同浓度CTLY的0.5 MPa CO2、3.5% NaCl溶液中的EIS谱图及其等效电路
c / mg·L-1Rs / Ω·cm2Rct / Ω·cm2CPEdl / μF·cm-2χ2η / %
07.07468.2223.50.0026
2258.0481196.3145.60.001593.75
3006.7121445.1128.30.001294.82
3757.1982359.892.90.000596.82
4507.2561843.5104.60.000895.93
表4  图7所示的Q235钢EIS拟合参数
图8  CTLY的c/θ-c拟合直线
T / oCr2SlopeInterceptKL·mg-1ΔGkJ·mol-1
600.99940.98116.1330.0620-30.56
900.99920.98621.5550.0464-32.44
1200.99891.03614.3900.0695-36.44
表5  不同温度下吸附等温式c/θ-c线性回归所得参数以及吸附热力学参数
图9  Q235钢在高温高压CO2腐蚀前后的表面SEM形貌
图10  Q235钢在高温高压CO2腐蚀前后的3D-AFM表面形貌
SampleRa / nmRq / nmRmax / nm
Before corrosion25.233.7257.7
After corrosion (without CTLY)124.2153.6990.4
After corrosion (with CTLY)22.431.4212.2
表6  图10中AFM测定的Q235钢表面粗糙度
图11  Q235钢在高温高压CO2腐蚀后的XRD图谱
[1] Yang T, Xu L, Wang J C, et al. Research progress on CO2 corrosion and protective countermeasures for oil casing [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1134
[1] (杨 涛, 许 磊, 王建春 等. 油套管CO2腐蚀和防护研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1134)
[2] Zhang Q H, Hou B S, Xu N, et al. Two novel thiadiazole derivatives as highly efficient inhibitors for the corrosion of mild steel in the CO2-saturated oilfield produced water [J]. J. Taiwan Inst. Chem. Eng., 2019, 96: 588
[3] Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J]. Int. J. Greenh. Gas Con., 2014, 31: 48
[4] Rangaswamy V M, Keshavayya J. Anticorrosive ability of cycloheximide on mild steel corrosion in 0.5 M H2SO4 solution [J]. Chem. Data Collect., 2022, 37: 100795
[5] Firdhouse M J, Nalini D. Corrosion inhibition of mild steel in acidic media by 5′-phenyl-2′, 4′-dihydrospiro [indole-3, 3′-pyrazol]-2(1H)-one [J]. J. Chem., 2013, 2013: 835365
[6] Zhao L C, Ma Z H, Sun Y T, et al. Performance of corrosion inhibitor in high temperature multi-component thermal fluid [J]. Corros. Prot., 2013, 34: 64
[6] (赵利昌, 马增华, 孙永涛 等. 高温多元热流体注采缓蚀剂的性能 [J]. 腐蚀与防护, 2013, 34: 64)
[7] Zhang J, Sun X J, Ren Y M, et al. The synergistic effect between imidazoline-based dissymmetric bis-quaternary ammonium salts and thiourea against CO2 corrosion at high temperature [J]. J. Surfact. Deterg., 2015, 18: 981
[8] Cao S Y, Liu D, Ding H, et al. Corrosion inhibition effects of a novel ionic liquid with and without potassium iodide for carbon steel in 0.5 M HCl solution: An experimental study and theoretical calculation [J]. J. Mol. Liquids, 2019, 275: 729
[9] Wu H, Deng S D, Li X H. Synergistic inhibition effect of cuscuta chinensis lam extract and potassium iodide on cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 77
[9] (吴 浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 77)
[10] Wang P J, Song Y H, Fan L, et al. Inhibition of Q235 steel in 1 mol/L HCl solution by a new efficient imidazolium schiff base corrosion inhibitor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 59
[10] (王鹏杰, 宋昱灏, 樊 林 等. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 59)
[11] Zhang C, Zhao J M. Synergistic inhibition effect of imidazoline ammonium salt and sodium dodecyl sulfate in CO2 system. [J]. Acta Phys-Chim. Sin., 2014, 30: 677
[11] (张 晨, 赵景茂. CO2体系中咪唑啉季铵盐与十二烷基磺酸钠之间的缓蚀协同效应 [J]. 物理化学学报, 2014, 30: 677)
[12] Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
[13] Qiang Y J, Li H, Lan X J. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52: 63
[14] Zhang Q H, Hou B S, Li Y Y, et al. Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution [J]. Corros. Sci., 2020, 164: 108346
[15] Ansari K R, Chauhan D S, Quraishi M A, et al. Bis(2-aminoethyl) amine-modified graphene oxide nanoemulsion for carbon steel protection in 15%HCl: Effect of temperature and synergism with iodide ions [J]. J. Colloid Interf. Sci., 2020, 564: 124
[16] Zhang Q, Guo L, Huang Y, et al. Influence of an imidazole-based ionic liquid as electrolyte additive on the performance of alkaline Al-air battery [J]. J. Power Sources, 2023, 564: 232901
[17] Zhu M Y, He Z Y, Guo L, et al. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation [J]. J. Mol. Liq., 2021, 342: 117583
[18] Cen H Y, Cao J J, Chen Z Y. Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2020, 177: 109011
[19] Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids [J]. J. Am. Chem. Soc., 1916, 38: 2221
[20] Singh A, Ansari K R, Chauhan D S, et al. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15%HCl medium [J]. J. Colloid Interf. Sci., 2020, 560: 225
[21] Pareek S, Jain D, Hussain S, et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5wt.%NaCl solution by eco-friendly imidazopyrimidine dye: Experimental and theoretical approach [J]. Chem. Eng. J., 2019, 358: 725
[22] Feng L, Zhang S T, Zheng S Y, et al. Effect of halogen anions on corrosion inhibition of ionic liquids [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 791
[22] (冯 丽, 张胜涛, 郑思远 等. 卤素阴离子对离子液体缓蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 791)
[23] Wang X T, Yang J, Chen X. 2-Benzylsulfanyl-1H-benzimidazole and its mixture as highly efficient corrosion inhibitors for carbon steel under dynamic supercritical CO2 flow conditions [J]. Corros. Sci., 2024, 235: 112170
[1] 李顺平, 党莹, 洪晓峰, 宁方强. 水化学对690镍基合金高温高压水腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1035-1040.
[2] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[3] 张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[5] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[6] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[7] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[8] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[9] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[10] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[11] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[12] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[13] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[14] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[15] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.