Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1098-1106     CSTR: 32134.14.1005.4537.2024.404      DOI: 10.11902/1005.4537.2024.404
  研究报告 本期目录 | 过刊浏览 |
聚合物驱集输管道微生物腐蚀行为实验研究
张维智1,2,3, 冯思乔4, 宋霄鹏5, 刘艾华5, 唐德志6, 闫茂成1(), 韩恩厚7
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 合肥 230026
3 中国石油天然气股份有限公司油气和新能源分公司 北京 100007
4 大庆油田设计院有限公司 大庆 163712
5 山东知本安全技术有限公司 济南 250101
6 中国石油天然气股份有限公司规划总院 北京 100007
7 广东腐蚀科学与技术创新研究院 广州 250101
Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline
ZHANG Weizhi1,2,3, FENG Siqiao4, SONG Xiaopeng5, LIU Aihua5, TANG Dezhi6, YAN Maocheng1(), HAN En-Hou7
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 Oil and Gas and New Energy Branch of China National Petroleum Corporation, Beijing 100007, China
4 Daqing Oilfield Design Institute Co., Ltd., Daqing 163712, China
5 Shandong Zhiben Safety Technology Co., Ltd., Jinan 250101, China
6 China National Petroleum Corporation Planning Institute, Beijing 100007, China
7 Institute of Corrosion Science and Technology, Guangzhou 250101, China
引用本文:

张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
Weizhi ZHANG, Siqiao FENG, Xiaopeng SONG, Aihua LIU, Dezhi TANG, Maocheng YAN, En-Hou HAN. Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1098-1106.

全文: PDF(16170 KB)   HTML
摘要: 

针对油田聚合物驱集输管道微生物腐蚀问题,采用电化学测试,表面形貌和元素分析等方法,研究含厌氧硫酸还原菌(SRB)和好氧铁细菌(IOB)的聚合物驱环境介质中管道钢的腐蚀行为。结果表明:聚合物驱介质中SRB和IOB均在管道钢表面附着生长,试样表面可见疏松微生物膜,显著影响管道钢的腐蚀电化学过程。SRB和IOB环境中生物膜生长初期,试样开路电位升高约20 mV,显示胞外聚合物EPS对电化学过程的物理屏障作用。IOB环境腐蚀速率较低,SRB和SRB/IOB环境中腐蚀电流密度显著增大。SRB/IOB共存环境下,IOB消耗溶解氧为SRB创造厌氧环境,有利于固着SRB的生长,进而促进阴极反应和阳极反应,使得腐蚀形式从非均匀腐蚀向局部腐蚀转变,形成明显的特征点蚀坑。

关键词 集输管道微生物腐蚀硫酸盐还原菌铁细菌聚合物驱油    
Abstract

Regarding the microbial corrosion issue in polymer flooding pipelines for oil fields, the corrosion behavior and patterns of pipeline steel in a polymer flooding environment containing anaerobic sulfate reducing bacteria (SRB) and aerobic iron bacteria (IOB) were assessed by means of electrochemical measurement, and characterization in surface morphology, composition and phase constutients of corrsion products. The results indicate that both SRB and IOB attend to adhere and grow on the surface of pipeline steel in polymer flooding media, and a loose microbial film can be seen on the steel surface, significantly affecting the corrosion electrochemical process of pipeline steel. In the early stage of biofilm growth in SRB and IOB environments, open circuit potential of the steel increased about 20 mV, indicating the physical barrier effect of extracellular polymeric EPS on electrochemical processes. The corrosion rate in IOB environment is relatively low, and the corrosion current density significantly increases in SRB and SRB/IOB environments. In the coexistence environment of SRB and IOB, IOB consumes dissolved oxygen to create an anaerobic environment for SRB, which is conducive to the growth of fixed SRB, thereby promoting cathodic and anodic reactions, transforming the corrosion form from non-uniform corrosion to localized corrosion, and forming corrosion pits with peculiar characteristics.

Key wordsgathering pipeline    microbial corrosion    sulfate reducing bacteria    iron oxide bacteria    polymer flooding
收稿日期: 2024-12-22      32134.14.1005.4537.2024.404
ZTFLH:  TG172  
基金资助:国家自然科学基金(51471176)
通讯作者: 闫茂成,E-mail:yanmc@imr.ac.cn,研究方向为油气材料腐蚀及控制技术
Corresponding author: YAN Maocheng, E-mail: yanmc@imr.ac.cn
作者简介: 张维智,男,1974年生,博士生,高级工程师
Test groupTemperature / ℃Bacteria addition / volume fraction, %
SRB355% SRB inoculated solution + 5% IOB medium
IOB355% IOB inoculated solution + 5% SRB medium
SRB/IOB355% IOB inoculated solution + 5% SRB bacterial solution
Control355% SRB medium + 5% IOB medium
表1  实验温度及微生物介质条件
图1  接菌聚合物驱溶液中浸泡14 d后的20#钢表面形貌
ElementSRBIOBSRB/IOBControl
Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %Mass fraction / %Atomic fraction / %
O9.4325.3913.4835.2215.0736.699.3826.55
Fe82.5363.6786.5264.7877.3553.9490.6273.45
S5.227.02--3.584.34--
P2.823.92--4.005.03--
表2  20#钢在聚合物驱溶液中浸泡14 d后的表面化学成分
图2  20#钢在聚合物驱溶液中浸泡14 d后的腐蚀形貌
图3  20#钢在聚合物驱溶液中浸泡14 d后的蚀坑形貌
图4  20#钢在含有不同微生物的聚合物驱溶液中开路电位随时间的变化
图5  20#钢在含有不同微生物的聚合物驱溶液中电化学阻抗
图6  20#钢在含有不同微生物的聚合物驱溶液中溶液电阻和极化电阻随时间的变化
图7  20#钢在含有不同微生物的聚合物驱溶液中浸泡14 d后的Tafel曲线
[1] National Energy Security Research Center. 2020 oil and gas field pipeline operation safety report [R]. NY2020-09, 2020
[1] (国家能源安全研究中心. 2020年油气田管道运行安全报告 [R]. NY2020-09, 2020)
[2] Standnes D C, Skjevrak I. Literature review of implemented polymer field projects [J]. J. Petrol. Sci. Eng., 2014, 122: 761
[3] Cao X L, Ji Y F, Zhu Y W, et al. Research advance and technology outlook of polymer flooding [J]. Reserv. Eval. Dev., 2020, 10(6): 8
[3] (曹绪龙, 季岩峰, 祝仰文 等. 聚合物驱研究进展及技术展望 [J]. 油气藏评价与开发, 2020, 10(6): 8)
[4] Liang W, Zhao X T, Han Y X, et al. Research progress on heat and salt resistance polymer flooding [J]. Special Oil Gas Reserv., 2010, 17(2): 11
[4] (梁 伟, 赵修太, 韩有祥 等. 驱油用耐温抗盐聚合物研究进展 [J]. 特种油气藏, 2010, 17(2): 11)
[5] Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
[5] (柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
[6] Puentes-Cala E, Tapia-Perdomo V, Espinosa-Valbuena D, et al. Microbiologically influenced corrosion: the gap in the field [J]. Front. Environ. Sci., 2022, 10: 924842
[7] Sharma T, Iglauer S, Sangwai J S. Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery [J]. Ind. Eng. Chem. Res., 2016, 55: 12387
[8] Zahiri M G, Esmaeilnezhad E, Choi H J. Effect of polymer-graphene-quantum-dot solution on enhanced oil recovery performance [J]. J. Mol. Liq., 2022, 349: 118092
[9] Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
[9] (吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765)
doi: 10.11902/1005.4537.2023.150
[10] Qi Z H, Jiang T, Zhao M J, et al. Research progress on coatings of active control of microbiological contamination for aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 821
[10] (戚震辉, 江 涛, 赵茂锦 等. 飞机燃油系统微生物污染主动防治涂层研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 821)
doi: 10.11902/1005.4537.2022.287
[11] Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅱ) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
[11] (吴堂清, 杨 圃, 张明德 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ)腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353)
doi: 10.11902/1005.4537.2014.045
[12] Zhang H, Gao B W, Yan M C, et al. Corrosion behavior of X80 steel under dynamic DC interference and SRB [J]. Surf. Technol., 2022, 51: 330
[12] (张 辉, 高博文, 闫茂成 等. 动态直流干扰和SRB共同作用下X80钢的腐蚀行为 [J]. 表面技术, 2022, 51: 330)
[13] Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅰ) electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
[13] (吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346)
doi: 10.11902/1005.4537.2014.044
[14] Mandal A. Chemical flood enhanced oil recovery: a review [J]. Int. J. Oil Gas Coal Technol., 2015, 9: 241
[15] Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
[15] (舒 韵, 闫茂成, 魏英华 等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408)
[16] Roberge P R. Corrosion Engineering: Principles and Practice [M]. New York: McGraw-Hill Education, 2008.
[17] Liu J L, Jia R, Zhou E Z, et al. Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Int. Biodeterior. Biodegrad., 2018, 132: 132
[18] Aitken C M, Jones D M, Larter S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs [J]. Nature, 2004, 431: 291
[19] Yu L B, Yan M C, Wang B B, et al. Microbial corrosion of Q235 steel in acidic red soil environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 10
[19] (于利宝, 闫茂成, 王彬彬 等. 酸性土壤环境中Q235钢的微生物腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 10)
doi: 10.11902/1005.4537.2017.009
[20] Yang X, Sun F Y, Chen M. Study on corrosion behavior of X100 pipeline steel in simulated solution of Changshu soil [J]. Corros. Prot. Petrochem. Ind., 2019, 36(6): 13
[20] (杨 旭, 孙福洋, 陈 墨. X100管线钢在常熟土壤模拟溶液中的腐蚀行为研究 [J]. 石油化工腐蚀与防护, 2019, 36(6): 13)
[21] Liu H W, Gu T Y, Zhang G A, et al. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors [J]. Corros. Sci., 2016, 105: 149
[22] Yang G M, Gong M, Zheng X W, et al. A review of microbial corrosion in reclaimed water pipelines: Challenges and mitigation strategies [J]. Water Pract. Technol., 2022, 17: 731
[23] Sachan R, Singh A K. Corrosion of steel due to iron oxidizing bacteria [J]. Anti-Corros. Methods Mater., 2019, 66: 19
[24] Bao M T, Chen Q G, Li Y M, et al. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field [J]. J. Hazardous Mater., 2010, 184(1-3): 105
[25] Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
[25] (王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
doi: 10.11902/1005.4537.2024.051
[26] Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
[27] QI B M, Cui C W, Yuan Y X. Effects of iron bacteria on cast iron pipe corrosion and water quality in water distribution systems [J]. Int. J. Electrochem. Sci., 2016, 11: 545
[28] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
[28] (黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699)
[29] Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
[29] (李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429)
doi: 10.11902/1005.4537.2020.133
[1] 黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[2] 陈潜, 黄伟, 张昌会, 管奥成, 张宸, 叶晓芃. 基于物理引导的集输管道内腐蚀速率预测及可解释性分析[J]. 中国腐蚀与防护学报, 2025, 45(3): 720-730.
[3] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[4] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[5] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[6] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[7] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[8] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[9] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[10] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[11] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[12] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[13] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[14] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[15] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.