|
|
聚合物驱集输管道微生物腐蚀行为实验研究 |
张维智1,2,3, 冯思乔4, 宋霄鹏5, 刘艾华5, 唐德志6, 闫茂成1( ), 韩恩厚7 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 合肥 230026 3 中国石油天然气股份有限公司油气和新能源分公司 北京 100007 4 大庆油田设计院有限公司 大庆 163712 5 山东知本安全技术有限公司 济南 250101 6 中国石油天然气股份有限公司规划总院 北京 100007 7 广东腐蚀科学与技术创新研究院 广州 250101 |
|
Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline |
ZHANG Weizhi1,2,3, FENG Siqiao4, SONG Xiaopeng5, LIU Aihua5, TANG Dezhi6, YAN Maocheng1( ), HAN En-Hou7 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China 3 Oil and Gas and New Energy Branch of China National Petroleum Corporation, Beijing 100007, China 4 Daqing Oilfield Design Institute Co., Ltd., Daqing 163712, China 5 Shandong Zhiben Safety Technology Co., Ltd., Jinan 250101, China 6 China National Petroleum Corporation Planning Institute, Beijing 100007, China 7 Institute of Corrosion Science and Technology, Guangzhou 250101, China |
引用本文:
张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
Weizhi ZHANG,
Siqiao FENG,
Xiaopeng SONG,
Aihua LIU,
Dezhi TANG,
Maocheng YAN,
En-Hou HAN.
Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1098-1106.
[1] |
National Energy Security Research Center. 2020 oil and gas field pipeline operation safety report [R]. NY2020-09, 2020
|
[1] |
(国家能源安全研究中心. 2020年油气田管道运行安全报告 [R]. NY2020-09, 2020)
|
[2] |
Standnes D C, Skjevrak I. Literature review of implemented polymer field projects [J]. J. Petrol. Sci. Eng., 2014, 122: 761
|
[3] |
Cao X L, Ji Y F, Zhu Y W, et al. Research advance and technology outlook of polymer flooding [J]. Reserv. Eval. Dev., 2020, 10(6): 8
|
[3] |
(曹绪龙, 季岩峰, 祝仰文 等. 聚合物驱研究进展及技术展望 [J]. 油气藏评价与开发, 2020, 10(6): 8)
|
[4] |
Liang W, Zhao X T, Han Y X, et al. Research progress on heat and salt resistance polymer flooding [J]. Special Oil Gas Reserv., 2010, 17(2): 11
|
[4] |
(梁 伟, 赵修太, 韩有祥 等. 驱油用耐温抗盐聚合物研究进展 [J]. 特种油气藏, 2010, 17(2): 11)
|
[5] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
[5] |
(柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
|
[6] |
Puentes-Cala E, Tapia-Perdomo V, Espinosa-Valbuena D, et al. Microbiologically influenced corrosion: the gap in the field [J]. Front. Environ. Sci., 2022, 10: 924842
|
[7] |
Sharma T, Iglauer S, Sangwai J S. Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery [J]. Ind. Eng. Chem. Res., 2016, 55: 12387
|
[8] |
Zahiri M G, Esmaeilnezhad E, Choi H J. Effect of polymer-graphene-quantum-dot solution on enhanced oil recovery performance [J]. J. Mol. Liq., 2022, 349: 118092
|
[9] |
Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
|
[9] |
(吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765)
doi: 10.11902/1005.4537.2023.150
|
[10] |
Qi Z H, Jiang T, Zhao M J, et al. Research progress on coatings of active control of microbiological contamination for aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 821
|
[10] |
(戚震辉, 江 涛, 赵茂锦 等. 飞机燃油系统微生物污染主动防治涂层研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 821)
doi: 10.11902/1005.4537.2022.287
|
[11] |
Wu T Q, Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅱ) corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
|
[11] |
(吴堂清, 杨 圃, 张明德 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅱ)腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353)
doi: 10.11902/1005.4537.2014.045
|
[12] |
Zhang H, Gao B W, Yan M C, et al. Corrosion behavior of X80 steel under dynamic DC interference and SRB [J]. Surf. Technol., 2022, 51: 330
|
[12] |
(张 辉, 高博文, 闫茂成 等. 动态直流干扰和SRB共同作用下X80钢的腐蚀行为 [J]. 表面技术, 2022, 51: 330)
|
[13] |
Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅰ) electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
|
[13] |
(吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346)
doi: 10.11902/1005.4537.2014.044
|
[14] |
Mandal A. Chemical flood enhanced oil recovery: a review [J]. Int. J. Oil Gas Coal Technol., 2015, 9: 241
|
[15] |
Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
|
[15] |
(舒 韵, 闫茂成, 魏英华 等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408)
|
[16] |
Roberge P R. Corrosion Engineering: Principles and Practice [M]. New York: McGraw-Hill Education, 2008.
|
[17] |
Liu J L, Jia R, Zhou E Z, et al. Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Int. Biodeterior. Biodegrad., 2018, 132: 132
|
[18] |
Aitken C M, Jones D M, Larter S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs [J]. Nature, 2004, 431: 291
|
[19] |
Yu L B, Yan M C, Wang B B, et al. Microbial corrosion of Q235 steel in acidic red soil environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 10
|
[19] |
(于利宝, 闫茂成, 王彬彬 等. 酸性土壤环境中Q235钢的微生物腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 10)
doi: 10.11902/1005.4537.2017.009
|
[20] |
Yang X, Sun F Y, Chen M. Study on corrosion behavior of X100 pipeline steel in simulated solution of Changshu soil [J]. Corros. Prot. Petrochem. Ind., 2019, 36(6): 13
|
[20] |
(杨 旭, 孙福洋, 陈 墨. X100管线钢在常熟土壤模拟溶液中的腐蚀行为研究 [J]. 石油化工腐蚀与防护, 2019, 36(6): 13)
|
[21] |
Liu H W, Gu T Y, Zhang G A, et al. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors [J]. Corros. Sci., 2016, 105: 149
|
[22] |
Yang G M, Gong M, Zheng X W, et al. A review of microbial corrosion in reclaimed water pipelines: Challenges and mitigation strategies [J]. Water Pract. Technol., 2022, 17: 731
|
[23] |
Sachan R, Singh A K. Corrosion of steel due to iron oxidizing bacteria [J]. Anti-Corros. Methods Mater., 2019, 66: 19
|
[24] |
Bao M T, Chen Q G, Li Y M, et al. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field [J]. J. Hazardous Mater., 2010, 184(1-3): 105
|
[25] |
Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2,2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
|
[25] |
(王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
doi: 10.11902/1005.4537.2024.051
|
[26] |
Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
|
[27] |
QI B M, Cui C W, Yuan Y X. Effects of iron bacteria on cast iron pipe corrosion and water quality in water distribution systems [J]. Int. J. Electrochem. Sci., 2016, 11: 545
|
[28] |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
|
[28] |
(黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699)
|
[29] |
Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
|
[29] |
(李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429)
doi: 10.11902/1005.4537.2020.133
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|