中国腐蚀与防护学报, 2025, 45(4): 947-955 DOI: 10.11902/1005.4537.2024.319

研究报告

沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究

李维鹏1,2, 罗坤杰1, 王惠生3, 陈嘉诚3, 韩姚磊1, 庞晓露2, 彭群家,1, 乔利杰,2

1 苏州热工研究院有限公司 苏州 215004

2 北京科技大学北京材料基因工程高精尖创新中心 北京 100083

3 中广核铀业发展有限公司 阳江 529500

Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water

LI Weipeng1,2, LUO Kunjie1, WANG Huisheng3, CHEN Jiacheng3, HAN Yaolei1, PANG Xiaolu2, PENG Qunjia,1, QIAO Lijie,2

1 Suzhou Nuclear Power Research Institute, Suzhou 215004, China

2 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

3 CGNPC Uranium Resources Co., Ltd., Yangjiang 529500, China

通讯作者: 彭群家,E-mail:qunjiapeng@163.com,研究方向为核电厂老化与寿命管理;乔利杰,E-mail:lqiao@ustb.edu.cn,研究方向为材料腐蚀、氢脆和应力腐蚀

收稿日期: 2024-09-30   修回日期: 2024-12-11  

基金资助: 中广核-北科大先进能源材料与服役安全联合研发中心资助项目

Corresponding authors: PENG Qunjia, E-mail:qunjiapeng@163.com;QIAO Lijie, E-mail:lqiao@ustb.edu.cn

Received: 2024-09-30   Revised: 2024-12-11  

Fund supported: CGN-USTB Joint Research and Development Center for Advanced Energy Materials and Service Safety

作者简介 About authors

李维鹏,男,1991年生,博士生

摘要

镍基718合金因力学性能优异、易加工且耐腐蚀性能好,被广泛用于制备反应堆燃料组件格架弹簧。在辐照、应力和一回路高温高压水等苛刻环境共同作用下,镍基718合金格架弹簧存在发生应力腐蚀开裂(SCC)的风险。近年来国内外已经陆续出现因镍基718合金格架弹簧SCC导致的燃料棒破损现象,对核电厂的安全性、可靠性和经济性产生重要影响。本文以核电用标准热处理工艺的镍基718合金带材为研究对象,在模拟核电一回路水环境中开展镍基718合金SCC萌生行为研究,通过在不同应变下间断式取样观察表面裂纹萌生行为。研究发现,标准热处理工艺镍基718合金以晶界开裂为主,(Nb, Ti)C析出相会氧化成脆性的含Nb氧化物,氧化物后的(Nb, Ti)C与TiN在应力的作用下也发生开裂。随着应变的增加,晶界和(Nb, Ti)C处裂纹进一步向晶界扩展,TiN处的裂纹有向晶界扩展的趋势。因此,(Nb, Ti)C与TiN会降低镍基718合金的抗SCC性能。

关键词: 核电 ; 镍基718合金 ; 应力腐蚀 ; 裂纹萌生 ; 组织结构

Abstract

Nickel based 718 alloy is commonly used to fabricate grid springs for pressure water reactor, due to its excellent mechanical properties, relative ease of manufacturing, and good corrosion resistance. There is a risk of stress corrosion cracking (SCC) for nickel based 718 alloy in harsh environments such as irradiation, stress, and high temperature and pressure water in the primary circuit. In recent years, fuel rod damage caused by SCC of nickel based 718 alloy grid springs has emerged both domestically and internationally, which has a significant impact on the safety, reliability, and economy of nuclear power plants. Herein, the SCC initiation behavior of nickel based 718 alloy strips, being subjected to standard heat treatment, in a simulated pressurized water environment of primary circuit of nuclear power plant was assessed, while the evolution of crack initiation on the alloy surface was observed through intermittent sampling under different strain conditions. It is found that the cracking of 718 alloy emerged mainly on grain boundaries, meanwhile, the precipitates of (Nb, Ti)C tend to be oxidized into brittle Nb containing oxides. The oxidized (Nb, Ti)C and TiN are easy crack under the action of stress. With the increase of strain, cracks at grain boundaries and on particles (Nb, Ti)C tend to further propagating, and the cracks at TiN tend to expanding towards grain boundaries. Therefore, (Nb, Ti)C and TiN may play a detrimental role to the SCC resistance of nickel based 718 alloy.

Keywords: nuclear power ; nickel based 718 alloy ; stress corrosion ; crack initiation ; microstructure

PDF (28917KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李维鹏, 罗坤杰, 王惠生, 陈嘉诚, 韩姚磊, 庞晓露, 彭群家, 乔利杰. 沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究. 中国腐蚀与防护学报[J], 2025, 45(4): 947-955 DOI:10.11902/1005.4537.2024.319

LI Weipeng, LUO Kunjie, WANG Huisheng, CHEN Jiacheng, HAN Yaolei, PANG Xiaolu, PENG Qunjia, QIAO Lijie. Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(4): 947-955 DOI:10.11902/1005.4537.2024.319

镍基718合金因力学性能优异、易加工且耐腐蚀性能好,被广泛用于制备反应堆燃料组件格架弹簧。格架弹簧是燃料组件核心部件,用于夹持定位、固定燃料棒,其服役环境十分苛刻。一方面,格架弹簧承受较大服役应力;另一方面,格架弹簧直接暴露于反应堆堆芯强中子辐照环境,基体内会产生大量结构损伤导致合金发生力学性能变化。同时,格架弹簧还直接与一回路高温高压水腐蚀环境接触。在上述腐蚀、应力、辐照等苛刻环境作用下格架弹簧存在发生开裂的风险,可能导致燃料棒破损,对核电站的安全性、可靠性和经济性产生重要影响。近年来国内外已经陆续出现因镍基718合金格架弹簧SCC导致的燃料棒破损现象。由于国内外对格架弹簧SCC机理的认知不足,目前尚不能解释格架弹簧发生SCC的根本原因。

Wang等[1]研究表明,离子辐照会导致镍基718合金萌生裂纹的数量密度和长度密度均增加。Carsughi等[2]研究表明,离子辐照会增加断口脆性区的面积。因此,这些研究表明离子辐照会增加镍基718合金的SCC敏感性。Thomas等[3]研究表明,随着中子辐照剂量的增加,γ″析出相的消失和γ′析出相的分解细化导致镍基718合金在200~400 ℃下软化,这会导致格架弹簧应力松弛,进而影响镍基718合金SCC。

Morton等[4]研究表明,溶解氢浓度会影响镍基合金裂纹扩展速率,且镍基合金的SCC敏感性可能与NiO的稳定性密切相关。在高温B、Li环境中,镍基系列合金在溶解氢环境中的裂纹扩展速率小于溶解氧环境[5]。并且在不同温度下裂纹扩展速率最快时对应的溶解氢浓度也有变化,温度越高,峰值溶解氢浓度越高,裂纹扩展速率增加量也越大。目前,关于水化学对718合金格架弹簧SCC的影响研究较少。

密歇根大学Wang等[6]和Ning等[7]研究认为,δ相由于活性Nb含量高可以优先氧化,且会加剧局部变形的程度,会降低合金SCC的性能;Ning等[7]还认为γ′/γ″相沉淀相与δ相类似的作用。Garzarolli等[8,9]通过堆内研究表明,含有δ相的镍基718合金的抗辐照促进应力腐蚀开裂(IASCC)性能优于不含有δ相的镍基718合金。Leonard等[10]研究表明,裂纹在晶界δ相附近处停止扩展。因此,关于δ相对镍基718合金SCC的影响目前还存在争议。Wang等[6]和Demetriou等[11]的拉伸试验研究表明,镍基718合金中的碳化物和氮化物在高温氩气环境和常温空气环境中会开裂,且镍基718合金中碳化物富含活性Nb元素。因此,碳化物和氮化物也可能对镍基718合金SCC性能产生影响,亟需开展相关研究。

基于上述现状,本研究以两个厂家提供的标准工艺镍基718合金带材为对象,研究碳化物、氮化物等组织结构对镍基718合金SCC裂纹萌生行为的影响,以期为揭示镍基718合金格架弹簧SCC的机理提供参考。

1 实验方法

试验材料为两个厂家提供的沉淀硬化态镍基718合金带材(分别命名为带材A和B),均按照核电商用标准热处理工艺进行处理,即1080 ℃/47 s + 718 ℃/8 h + 621 ℃/8 h,两种镍基718合金带材的化学成分如表1所示。将10 mm × 10 mm × 1 mm的两种镍基718合金样品采用金相嵌镶粉进行热镶嵌。镶嵌后的样品采用#100,#400,#1000,#2000,#5000的SiC砂纸湿磨,并用1 μm的金刚石抛光膏进行机械抛光,随后使用王水侵蚀15 s,侵蚀后的样品置于酒精和去离子水中依次清洗,并在空气中干燥。采用Zeiss Axio Observer. Z1m光学显微镜观察合金的组织结构,采用FEI XL30的扫描电子显微镜(SEM)进一步观察组织结构。

表1   两种镍基718合金化学成分 (mass fraction / %)

Table 1  Chemical compositions of two 718 nickel-based alloys

StripCSiMnPSCrNiMoAlTiNb + TaCoFe
A0.0090.050.260.0030.00118.2853.43.070.511.035.110.0018Bal.
B0.010.040.260.0060.00118.0853.63.060.521.025.040.002Bal.

新窗口打开| 下载CSV


高温空气拉伸实验试样长60 mm,厚度为0.266 mm,具体试样尺寸如图1所示。实验温度为315 ℃,拉伸速率为2.5 × 10-4 s-1

图1

图1   样品尺寸(mm)

Fig.1   Dimensions of tensile test sample (mm)


慢应变速率拉伸(SSRT)实验样品尺寸与高温拉伸实验样品相同。SSRT实验样品一面为原始表面,另一面采用#100,#400,#1000,#2000,#5000的SiC砂纸打磨后,使用1 μm的金刚石抛光膏进行机械抛光,随后采用0.02 μm的氧化硅精细抛光悬浮液在绒布上抛光2 h,使析出相凸显,最后采用酒精超声、去离子水清洗表面,晾干备用。

SSRT实验包含高温氮气环境SSRT实验和高温高压水环境SSRT实验。高温氮气环境SSRT实验在320 ℃氮气环境中采用SCC试验机开展,拉伸速率为3 × 10-7 s-1,在10%应变中止实验,取出样品进行SEM观察分析。高温高压水SSRT实验在320 ℃、15.5 MPa的1200 mg/L B(以H3BO3形式)+ 2.2 mg/L Li (以LiOH·H2O形式)动态循环水溶液中采用SCC试验机开展。升温前,通入高纯氮气除氧直至溶解氧浓度低于5 μg/L,并持续通入氮气。在温度和压力稳定后,开始SSRT实验。实验采用间断式慢应变速率拉伸的方法,拉伸速率为3 × 10-7 s-1,在不同应变中止实验,取出样品进行SEM观察分析;设置的中止应变分别为10%、15%,最后拉断样品。每次取出样品后,采用SEM原位跟踪观察裂纹萌生和扩展情况,并选取特定区域统计裂纹数量、长度等信息。样品拉断后,进行断口观察。

2 实验结果

2.1 组织结构

图2为两种镍基718合金带材金相图。两种镍基718合金带材均为面心立方的单相奥氏体结构,组织结构中含有孪晶。图3中3个位置的SEM能谱分析表明(表2),镍基718合金中含有少量随机分布的富Nb、Ti、C沉淀相和TiN,文献[9]分析表明,这种富Nb、Ti、C沉淀相为(Nb, Ti)C[10]图2表明沿轧制方向存在条带状分布的(Nb, Ti)C和TiN。此外,晶粒内部还存在大量的Ni3(Ti, Al, Nb)(γ′相)以及Ni3(Nb, Ti, Al)(γ″相)强化析出相[6]。两种镍基718合金带材的晶粒度均为8~9级。

图2

图2   两种镍基718合金带材组织结构形貌

Fig.2   Microstructures of A (a) and B (b) types of nickel based 718 alloy strips


图3

图3   镍基718合金带材A组织结构SEM像

Fig.3   SEM morphology of A type of 718 alloy strips


表2   图3中3个位置处EDS分析结果 (mass fraction / %)

Table 2  EDS analysis results of three points marked in Fig.3

PositionNiCrFeNbCTiN
Location 11.820.780.8669.7617.589.20-
Location 23.371.831.414.125.3662.8521.05
Location 349.3517.9417.464.826.431.01-

新窗口打开| 下载CSV


2.2 力学实验及慢应变速率拉伸实验结果

2.2.1 力学性能结果

两种镍基718合金带材力学参数测量结果如表3所示。由表3知,两种镍基718合金带材的屈服强度、抗拉强度以及延伸率差别不大。

表3   两种镍基718合金带材力学性能

Table 3  Mechanical properties of two types of 718 alloy strips

AlloyRp0.2 / MPaRm/ MPaA / %
Strip A1089128018.5
Strip B1112129919

新窗口打开| 下载CSV


2.2.2 慢应变速率拉伸实验结果

图4为带材A在不同应变下萌生的裂纹原位SEM观察图。由图4a1~a3知,在10%应变时,晶界、(Nb, Ti)C和TiN析出相处均发生开裂。如图4d所示,(Nb, Ti)C在高温高压水环境中会发生氧化,(Nb, Ti)C在应力和腐蚀的共同作用下发生开裂(如图4a2~c2所示)。随着应变的增加,晶界、(Nb, Ti)C和TiN析出相处的裂纹进一步在表面扩展,且(Nb, Ti)C析出相处的裂纹沿着晶界扩展,TiN析出相处的裂纹存在向晶界扩展的趋势。图4a2~c2中(Nb, Ti)C析出相处裂纹萌生的原位观察结果也表明,随着应变的增加,(Nb, Ti)C析出相表面的氧化物会发生脱落。

图4

图4   高温高压水环境镍基718合金A种带材SSRT实验原位SEM观察及EDS分析结果

Fig.4   In-situ SEM observation and EDS analysis of A type of 718 alloy strips during SSRT experiment in high-temperature and high-pressure water environment, showing the presence of cracks at different strains (a-c) and compositions of (Nb, Ti)C (d) in Fig.4a2 and TiN (e) in Fig.4a3 precipitation phases


图5为镍基718合金带材B在不同应变下萌生的裂纹原位SEM观察图。由图5知,带材B裂纹萌生位置与带材A相同;在10%应变时,晶界及TiN析出相与基体的界面处发生开裂。原位观察的(Nb, Ti)C析出相表面发生氧化,未发生开裂,但氧化后的(Nb, Ti)C析出相有脱落的趋势。随着应变的增加,晶界处的裂纹进一步在表面扩展,TiN析出相发生脆性开裂。

图5

图5   高温高压水环境镍基718合金B种带材SSRT实验原位SEM观察及EDS分析结果

Fig.5   In-situ SEM observation and EDS analysis of B type of 718 alloy strips during SSRT experiment in high-temperature and high-pressure water environment, showing the presence of cracks at different strains (a-c) and compositions of (Nb, Ti)C (d) in Fig.5a2 and TiN (e) in Fig.5a3 precipitation phases


在SSRT实验过程中选取特定区域统计≥ 5 μm裂纹的长度和数量,如表4所示。在应变为10%时,带材A表面裂纹的密度和平均长度分别为7个/mm2和44 μm/mm2,带材B表面裂纹的密度和平均长度分别为33个/mm2和253 μm/mm2。在应变累计到15%时,带材A表面裂纹的密度和平均长度分别为48个/mm2和356 μm/mm2,带材B表面裂纹的密度和平均长度分别为145个/mm2和1314 μm/mm2。因此,在10%和15%应变下,带材B裂纹密度和平均长度均大于带材A。图6为两种带材拉断后的断口形貌。由图6知,两种镍基镍基718合金带材断口形貌基本一致,均为韧窝状。

表4   两种带材裂纹信息统计

Table 4  Densities and lengths of cracks for two types of 718 alloy strips during SSRT at different strains

MaterialsStrainCrack density #cracks/mm2Crack length per unit area / μm·mm-2
Strip A10%744
15%48356
Strip B10%33253
15%1451314

新窗口打开| 下载CSV


图6

图6   高温高压水环境中两种镍基718合金带材SSRT实验典型断口形貌

Fig.6   Typical fracture morphologies of A type (a) and B type (b) of 718 alloy strips after SSRT experiment in high-temperature and high-pressure water environment


综上,断口形貌的结果不能比较两种带材的SCC敏感性,但从不同应变下裂纹长度和密度的统计结果知,带材A的SCC敏感性小于带材B。

3 分析与讨论

3.1 裂纹萌生特征分析

图78高温惰性环境拉伸实验研究表明,镍基718合金晶界未发生开裂,而(Nb, Ti)C和TiN发生脆性开裂。因此,图45中晶界开裂应该为应力和腐蚀共同作用的结果。分析统计不同应变下两种带材在晶界和析出相处裂纹的密度,如表5所示。在10%应变下,带材A的晶界处萌生的裂纹数量与析出相处裂纹密度相差不大;随着应变累积到15%,带材A晶界处萌生的裂纹密度大于析出相处裂纹密度。在10%和15%应变下,带材B晶界处萌生的裂纹密度均大于析出相处的裂纹密度。因此,标准工艺镍基718合金带材以晶界开裂为主,部分(Nb, Ti)C和TiN析出相处也会发生开裂。

图7

图7   320 ℃下氮气环境中10%应变后镍基718合金B种带材表面TiN析出相SEM观察及能谱分析

Fig.7   SEM observation and EDS analysis of TiN phase on the surface of B type of 718 alloy strips after 10% strain during SSRT test in nitrogen environment at 320 ℃


图8

图8   320 ℃下氮气环境中10%应变后镍基718合金B种带材表面(Nb,Ti)C析出相SEM观察及EDS分析

Fig.8   SEM observation (a) and EDS analysis (b) of (Nb,Ti)C phase on the surface of B type of 718 alloy strips after 10% strain during SSRT test in nitrogen environment at 320 ℃


表5   两种带材裂纹特征信息统计

Table 5  Characteristic data of cracks for two types of 718 alloy strips

MaterialsCharacteristics of original organizational structureCrack density at different positions
Density of precipitated phases #cracks/mm2StrainCrack density at grain boundaries / #cracks·mm-2Crack density at precipitated phases / #cracks·mm-2
Strip A13010%34
15%408
Strip B36310%2112
15%12045

新窗口打开| 下载CSV


对比两种带材的裂纹特征信息,在10%和15%应变下,带材B的晶界和析出相处裂纹密度均大于带材A。对两种带材原始组织结构中析出相的密度进行统计,结果表明带材A中析出相密度为130个/mm2,带材B中析出相密度为363个/mm2。因此,带材B中析出相密度大于带材A,这是带材B的SCC敏感性大于带材A的原因之一。

3.2 析出相对镍基718合金SCC的影响

图45910表明,氧化后的(Nb, Ti)C析出相容易发生开裂脱落。(Nb, Ti)C析出相在高温高压水环境中容易发生氧化形成含Nb氧化物,在应力的作用下,脆性的含Nb氧化物容易发生开裂[12~14]。开裂或脱落的(Nb, Ti)C析出相在其底部与基体界面处会形成应力集中,导致晶界裂纹萌生(图6)。图7中氧化后的(Nb, Ti)C析出相虽然未脱落,但开裂后明显沿着晶界扩展。

图9

图9   带材A在拉断以及带材B在应变10%时(Nb, Ti)C析出相SEM像

Fig.9   SEM images of (Nb, Ti)C precipitates for fractured strip A (a) and strip B with 10% strain (b)


图10

图10   带材B表面(Nb, Ti)C析出相SEM观察及EDS分析

Fig.10   SEM observation and EDS analysis of (Nb, Ti)C precipitates on the surface of strip B


TiN由于热力学稳定性高,不易腐蚀。由于硬度高,TiN作为障碍物会阻碍位错的运动,引起应力集中,在临界应力作用下,TiN容易发生开裂[15]。在应力作用下,TiN处裂纹可能进一步向晶界扩展(图3)。因此,(Nb, Ti)C与TiN都会促进镍基718合金的SCC。

4 结论

(1) 核电用标准热处理工艺的镍基718合金在除氧模拟核电一回路水环境中以晶界开裂为主,氧化物后的(Nb, Ti)C与TiN在应力的作用下也发生开裂。

(2) 在SSRT实验过程中,随着应变的增加,晶界和(Nb, Ti)C析出相处的裂纹沿着晶界扩展,TiN析出相处的裂纹存在向晶界扩展的趋势。因此,(Nb, Ti)C与TiN会降低镍基718合金的抗SCC性能。

参考文献

Wang M, Song M, Lear C R, et al.

Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals

[J]. J. Nucl. Mater., 2019, 515: 52

DOI      [本文引用: 1]

Thirteen alloys including high- and low-strength nickel-base alloys, austenitic stainless steels, and ferritic alloys were irradiated using 2 MeV protons to a damage level of 2.5 dpa at 360 degrees C and assessed for their susceptibility to irradiation assisted stress corrosion cracking (IASCC) in both BWR normal water chemistry (NWC) and PWR primary water. Cracking susceptibility was highest for high strength nickel-base alloys, followed by the low strength nickel-base alloys and then the low strength iron-base alloys. Cracking in the nickel-based alloys was worst in normal water chemistry, which was reversed for the iron-based alloys. In general, cracking correlated with the degree of microstructure changes, though no single feature could be linked to cracking. IGSCC occurred in both the unirradiated and irradiated conditions in high strength nickel-base alloys with susceptibility being considerably higher following irradiation. In all cases, slip was planar, and the degree of slip localization correlated with the probability of IG crack initiation. Low strength nickel-base alloys showed the same dependence on environment as high strength alloys but were considerably less susceptible to IASCC initiation. Among the low strength iron-base alloys, alloy 800 was most susceptible to IASCC initiation in both BWR NWC and PWR primary water, which also correlated with grain boundary chromium depletion and silicon segregation. Across all alloys, cracking correlated with both the degree of localized deformation and the hardness in the irradiated condition. The agreement is expected as increased hardening also correlates with localized deformation, which is likely a necessary, though insufficient condition for cracking. (C) 2018 Elsevier B.V.

Carsughi F, Derz H, Ferguson P, et al.

Investigations on Inconel 718 irradiated with 800 MeV protons

[J]. J. Nucl. Mater., 1999, 264: 78

[本文引用: 1]

Thomas L E, Sencer B H, Bruemmer S M.

Radiation-induced phase instabilities and their effects on hardening and solute segregation in precipitation-strengthened alloy 718

[J]. MRS Online Proc. Libr., 2000, 650: 15

[本文引用: 1]

Morton D S, Attanasio S A, Young G A, et al.

The influence of dissolved hydrogen on nickel alloy SCC: a window to fundamental insight

[A]. Corrosion 2001 [C]. Houston, 2001: NACE-01117

[本文引用: 1]

Andresen P L, Morra M M.

Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water

[J]. Corrosion, 2008, 64: 15

[本文引用: 1]

Wang M, Song M, Was G S, et al.

The roles of thermal mechanical treatment and δ phase in the stress corrosion cracking of alloy 718 in primary water

[J]. Corros. Sci., 2019, 160: 108168

[本文引用: 3]

Ning Z H, Zhang H R, Zhang S H, et al.

Effects of precipitation on the stress corrosion crack initiation of alloy 718 in simulated pressurized water reactor primary environment

[J]. Acta Mater., 2024, 276: 120127

[本文引用: 2]

Garzarolli F, Alter D, Dewes P, et al.

Deformability of austenitic stainless steels and Ni-base alloys in the core of a boiling and a pressurized water reactor

[A]. Proceedings of the Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. Traverse City, 1987: 657

[本文引用: 1]

Dewes P, Alter D, Garzarolli F, et al.

Measurement of the deformability of austenitic stainless steels and nickel-base alloys in light water reactor cores

[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications [C]. West Conshohocken, 1993: 19

[本文引用: 2]

Leonard K J, Gussev M N, Stevens J N, et al.

Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

[J]. J. Nucl. Mater., 2015, 466: 443

[本文引用: 2]

Demetriou V, Robson J D, Preuss M, et al.

Study of the effect of hydrogen charging on the tensile properties and microstructure of four variant heat treatments of nickel alloy 718

[J]. Int. J. Hydrog. Energy, 2017, 42: 23856

[本文引用: 1]

Gao M, Dwyer D J, Wei R P.

Chemical and microstructural aspects of creep crack growth in inconel 718 alloy

[A]. Superalloys 718, 625, 706 and Various Dcrivatives [C]. Warrendale, 1994: 581

[本文引用: 1]

King B R, Patel H C, Gulino D A, et al.

Kinetic measurements of oxygen dissolution into niobium substrates: in situ X-ray photoelectron spectroscopy studies

[J]. Thin Solid Films, 1990, 192: 351

Miller C F, Simmons G W, Wei R P.

High temperature oxidation of Nb, NbC and Ni3Nb and oxygen enhanced crack growth

[J] Scr. Mater., 2000, 42: 227

[本文引用: 1]

Dutta R S, Tewari R, De P K.

Effects of heat-treatment on the extent of chromium depletion and caustic corrosion resistance of alloy 690

[J]. Corros. Sci., 2007, 49: 303

[本文引用: 1]

/