Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 209-216     CSTR: 32134.14.1005.4537.2024.225      DOI: 10.11902/1005.4537.2024.225
  研究报告 本期目录 | 过刊浏览 |
Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为
陈辉1, 徐福斌2, 方亚雄1, 朱忠亮3()
1 国家能源集团科学技术研究院有限公司 南京 210046
2 国家能源集团泰州发电有限公司 泰州 225300
3 华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206
Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC
CHEN Hui1, XU Fubin2, FANG Yaxiong1, ZHU Zhongliang3()
1 National Energy Group Science and Technology Research Institute Co., Ltd., Nanjing 210046, China
2 State Energy Group Taizhou Power Generation Co., Ltd., Taizhou 225300, China
3 Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
引用本文:

陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
Hui CHEN, Fubin XU, Yaxiong FANG, Zhongliang ZHU. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 209-216.

全文: PDF(14270 KB)   HTML
摘要: 

进行了605和640 ℃,26 MPa下超临界水环境中奥氏体不锈钢氧化2000 h实验,利用电子天平测量了氧化前后的试样增重,并采用场发射电子显微镜、能谱仪、X射线衍射仪以及X射线光电子能谱仪对氧化膜微观形貌、元素组成以及物相类型进行了分析。实验结果表明:氧化过程中氧化膜发生了剥落;氧化初期试样表面形成了结节状富铁氧化物,随着氧化时间的增加,富铁氧化物逐渐覆盖整个试样;氧化膜为双层结构,外层富铁内层富铬。温度和氧化时间影响氧化膜物相成分。氧化膜/基体界面存在薄的富铬氧化层,该富铬氧化层的存在影响了Super304H不锈钢抗氧化性能。研究结果为准确评价Super304H不锈钢抗氧化性能提供数据支撑。

关键词 Super304H不锈钢超临界水高温氧化氧化机理    
Abstract

The oxidation behavior of Super304H austenitic stainless steel in 605 and 640 oC, 26 MPa supercritical water for 2000 h was studied by intermittent weighing method. The mass change caused by oxidation in supercritical water was measured by electronic balance. The morphology, elemental composition and phase types of the oxide scales were examined by field emission electron microscope, energy spectrometer, X-ray diffractometer and X-ray photoelectron spectrometer. The results show that the oxide scale spalling occurs during the oxidation process. Nodular iron-rich oxides formed on the steel surface at the initial oxidation stage. With the increase in oxidation time, the iron-rich oxides gradually covered the whole surface of the test steel. The oxide scale was composed of a double layered structure, the outer layer rich in Fe and the inner layer rich in Cr. The temperature and oxidation time affect the phase composition of iron-rich oxides. A thin Cr-rich oxide layer can be observed at the oxide scale/substrate interface, which has an important impact on the oxidation resistance of Super304H. The results provide data support for the accurate evaluation of the oxidation resistance of Super304H stainless steel to supercritical water.

Key wordsSuper304H stainless steel    supercritical water    high-temperature oxidation    oxidation mechanism
收稿日期: 2024-07-26      32134.14.1005.4537.2024.225
ZTFLH:  TK245  
基金资助:国家重点研发计划(2022YFB4100403)
通讯作者: 朱忠亮,E-mail:zhzl@ncepu.edu.cn,研究方向为燃煤电站承压部件状态监测与寿命评估
Corresponding author: ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn
作者简介: 陈 辉,男,1982年生,硕士,正高级工程师
图1  Super304H不锈钢在605和640 ℃超临界水中氧化增重曲线
图2  605 ℃/26 MPa超临界水中Super304H不锈钢氧化不同时间后的表面形貌
图3  640 ℃/26 MPa超临界水中Super304H不锈钢氧化不同时间后的表面形貌
图4  对应图2和3标记位置处的元素成分
图5  Super304H不锈钢在605 ℃氧化800 h后的表面形貌侧视图
图6  Super304H不锈钢在605和640 ℃超临界水环境中氧化不同时间后的XRD谱
图7  Super304H不锈钢在605和640 ℃超临界水环境中氧化2000 h后的XPS谱
图8  Super304H不锈钢在605和640 ℃超临界水环境中氧化不同时间后的横截面形貌
图9  Super304H不锈钢在605和640 ℃超临界水环境中氧化不同时间后横截面对应的元素分布
图10  氧化膜/基体界面附近局部放大图及沿标记线元素分布
图11  奥氏体钢在超临界水中的氧化膜生长过程原理图
1 Wu Y. Microstructure and mechanical properties of Super304H superheater steel tube in service [J]. Heat Treat. Met., 2022, 47: 205
doi: 10.13251/j.issn.0254-6051.2022.11.036
1 吴 跃. 服役态Super304H过热器钢管显微组织及力学性能 [J]. 金属热处理, 2022, 47: 205
2 Hansson A N, Korcakova L, Hald J, et al. Long term steam oxidation of TP 347H FG in power plants [J]. Mater. High Temp., 2005, 22: 263
3 Rosser J C, Bass M I, Cooper C, et al. Steam oxidation of Super 304H and shot-peened Super 304H [J]. Mater. High Temp., 2012, 29: 95
4 Dudziak T, Łukaszewicz M, Simms N, et al. Steam oxidation of TP347HFG, super 304H and HR3C-analysis of significance of steam flowrate and specimen surface finish [J]. Corros. Eng. Sci. Technol., 2015, 50: 272
5 Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 oC [J]. Mater. Charact., 2017, 132: 119
6 Song C Y, Liu S Q. Experimental study on growth rate of oxide scale on superheater and reheater tubes in ultra-supercritical units [J]. Thermal Power Generat., 2016, 45: 120
6 朱朝阳, 刘绍强. 超超临界机组过/再热器氧化皮生长试验研究 [J]. 热力发电, 2016, 45: 120
7 Ma Y H, Wang Y F. Research on prediction method for growth and exfoliation of steam oxide of heat-resistant steels [J]. J. Chin. Soc. Power Eng., 2022, 42: 604
7 马云海, 王延峰. 耐热钢蒸汽氧化膜生长和剥落的预测方法研究 [J]. 动力工程学报, 2022, 42: 604
doi: 10.19805/j.cnki.jcspe.2022.07.003
8 Zhu Z L, Li Y Y, Ma C H, et al. The corrosion behavior of nickel-based alloy Inconel 740 H in supercritical water [J]. Corros. Sci., 2021, 192: 109848
9 Li H Y, Cao Q, Zhu Z L. Oxidation behaviour of Super 304H stainless steel in supercritical water [J]. Corros. Eng. Sci. Technol., 2018, 53: 293
10 Evans H E. Spallation models and their relevance to steam-grown oxides [J]. Mater. High Temp., 2005, 22: 155
11 Huntz A M, Andrieux M, Molins R. Relation between the oxidation mechanism of nickel, the microstructure and mechanical resistance of NiO films and the nickel purity. II. Mechanical resistance of NiO films [J]. Mat. Sci. Eng., 2006, 417A: 8
12 Lei M K, Xu Z C, Yang F J, et al. Interface fracture mechanics of failure for oxide scale on superalloy [J]. Acta Metall. Sin., 2004, 40: 1104
12 雷明凯, 徐忠成, 杨辅军 等. 高温合金氧化膜破坏的界面断裂力学分析 [J]. 金属学报, 2004, 40: 1104
13 Moon C O, Lee S B. Analysis on failures of protective-oxide layers and cyclic oxidation [J]. Oxid. Met., 1993, 39: 1
14 Hu H L, Zhou Z J, Li M, et al. Study of the corrosion behavior of a 18Cr-oxide dispersion strengthened steel in supercritical water [J]. Corros. Sci., 2012, 65: 209
15 Nezakat M, Akhiani H, Penttilä S, et al. Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water [J]. Corros. Sci., 2015, 94: 197
16 Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corros. Sci., 2002, 44: 2209
17 Yanar N M, Lutz B S, Garcia-Fresnillo L, et al. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels [J]. Oxid. Met., 2015, 84: 541
18 Liu H H, Liu G M, Li F T, et al. Oxidation behavior of TP439 stainless steel in water vapor at 800 oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 377
18 刘欢欢, 刘光明, 李富天 等. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 377
doi: 10.11902/1005.4537.2022.149
19 Fulger M, Mihalache M, Ohai D, et al. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment [J]. J. Nucl. Mater., 2011, 415: 147
20 Kuang W J, Wu X Q, Han E H. The oxidation behaviour of 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52: 4081
21 Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
22 Zhu Z L, Li R T, Liu X, et al. The characterization of oxide scales formed on ferritic-martensitic steel in supercritical water with dissolved oxygen [J]. Corros. Sci., 2020, 174: 108810
[1] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[2] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[3] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[4] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[5] 张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[6] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[7] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[8] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[9] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[10] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[11] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[12] 袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[13] 冯抗抗, 任延杰, 吕云蕾, 周梦妮, 陈荐, 牛焱. Si含量对四元Fe-20Ni-20Cr-ySi合金在900℃下氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[14] 王爽, 王资兴, 程晓农, 罗锐. 稀土La对钴基高温合金GH51881100℃下空气中氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[15] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.