|
|
Super304H不锈钢在605 ℃和640 ℃超临界水中的氧化行为 |
陈辉1, 徐福斌2, 方亚雄1, 朱忠亮3( ) |
1 国家能源集团科学技术研究院有限公司 南京 210046 2 国家能源集团泰州发电有限公司 泰州 225300 3 华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206 |
|
Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC |
CHEN Hui1, XU Fubin2, FANG Yaxiong1, ZHU Zhongliang3( ) |
1 National Energy Group Science and Technology Research Institute Co., Ltd., Nanjing 210046, China 2 State Energy Group Taizhou Power Generation Co., Ltd., Taizhou 225300, China 3 Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China |
引用本文:
陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃和640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
Hui CHEN,
Fubin XU,
Yaxiong FANG,
Zhongliang ZHU.
Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 209-216.
1 |
Wu Y. Microstructure and mechanical properties of Super304H superheater steel tube in service [J]. Heat Treat. Met., 2022, 47: 205
doi: 10.13251/j.issn.0254-6051.2022.11.036
|
1 |
吴 跃. 服役态Super304H过热器钢管显微组织及力学性能 [J]. 金属热处理, 2022, 47: 205
|
2 |
Hansson A N, Korcakova L, Hald J, et al. Long term steam oxidation of TP 347H FG in power plants [J]. Mater. High Temp., 2005, 22: 263
|
3 |
Rosser J C, Bass M I, Cooper C, et al. Steam oxidation of Super 304H and shot-peened Super 304H [J]. Mater. High Temp., 2012, 29: 95
|
4 |
Dudziak T, Łukaszewicz M, Simms N, et al. Steam oxidation of TP347HFG, super 304H and HR3C-analysis of significance of steam flowrate and specimen surface finish [J]. Corros. Eng. Sci. Technol., 2015, 50: 272
|
5 |
Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 oC [J]. Mater. Charact., 2017, 132: 119
|
6 |
Song C Y, Liu S Q. Experimental study on growth rate of oxide scale on superheater and reheater tubes in ultra-supercritical units [J]. Thermal Power Generat., 2016, 45: 120
|
6 |
朱朝阳, 刘绍强. 超超临界机组过/再热器氧化皮生长试验研究 [J]. 热力发电, 2016, 45: 120
|
7 |
Ma Y H, Wang Y F. Research on prediction method for growth and exfoliation of steam oxide of heat-resistant steels [J]. J. Chin. Soc. Power Eng., 2022, 42: 604
|
7 |
马云海, 王延峰. 耐热钢蒸汽氧化膜生长和剥落的预测方法研究 [J]. 动力工程学报, 2022, 42: 604
doi: 10.19805/j.cnki.jcspe.2022.07.003
|
8 |
Zhu Z L, Li Y Y, Ma C H, et al. The corrosion behavior of nickel-based alloy Inconel 740 H in supercritical water [J]. Corros. Sci., 2021, 192: 109848
|
9 |
Li H Y, Cao Q, Zhu Z L. Oxidation behaviour of Super 304H stainless steel in supercritical water [J]. Corros. Eng. Sci. Technol., 2018, 53: 293
|
10 |
Evans H E. Spallation models and their relevance to steam-grown oxides [J]. Mater. High Temp., 2005, 22: 155
|
11 |
Huntz A M, Andrieux M, Molins R. Relation between the oxidation mechanism of nickel, the microstructure and mechanical resistance of NiO films and the nickel purity. II. Mechanical resistance of NiO films [J]. Mat. Sci. Eng., 2006, 417A: 8
|
12 |
Lei M K, Xu Z C, Yang F J, et al. Interface fracture mechanics of failure for oxide scale on superalloy [J]. Acta Metall. Sin., 2004, 40: 1104
|
12 |
雷明凯, 徐忠成, 杨辅军 等. 高温合金氧化膜破坏的界面断裂力学分析 [J]. 金属学报, 2004, 40: 1104
|
13 |
Moon C O, Lee S B. Analysis on failures of protective-oxide layers and cyclic oxidation [J]. Oxid. Met., 1993, 39: 1
|
14 |
Hu H L, Zhou Z J, Li M, et al. Study of the corrosion behavior of a 18Cr-oxide dispersion strengthened steel in supercritical water [J]. Corros. Sci., 2012, 65: 209
|
15 |
Nezakat M, Akhiani H, Penttilä S, et al. Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water [J]. Corros. Sci., 2015, 94: 197
|
16 |
Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corros. Sci., 2002, 44: 2209
|
17 |
Yanar N M, Lutz B S, Garcia-Fresnillo L, et al. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels [J]. Oxid. Met., 2015, 84: 541
|
18 |
Liu H H, Liu G M, Li F T, et al. Oxidation behavior of TP439 stainless steel in water vapor at 800 oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 377
|
18 |
刘欢欢, 刘光明, 李富天 等. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 377
doi: 10.11902/1005.4537.2022.149
|
19 |
Fulger M, Mihalache M, Ohai D, et al. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment [J]. J. Nucl. Mater., 2011, 415: 147
|
20 |
Kuang W J, Wu X Q, Han E H. The oxidation behaviour of 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52: 4081
|
21 |
Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
|
22 |
Zhu Z L, Li R T, Liu X, et al. The characterization of oxide scales formed on ferritic-martensitic steel in supercritical water with dissolved oxygen [J]. Corros. Sci., 2020, 174: 108810
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|