Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 217-223     CSTR: 32134.14.1005.4537.2024.313      DOI: 10.11902/1005.4537.2024.313
  研究报告 本期目录 | 过刊浏览 |
激光增材制造AlCoCrFeNiSi高熵合金的氧化行为
郭静波1, 杨守华1(), 周子翼1, 牟仁德2, 谢云1, 舒小勇1, 戴建伟2, 彭晓1
1 南昌航空大学材料科学与工程学院 南昌 330063
2 中国航发北京航空材料研究院 北京 100095
High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy
GUO Jingbo1, YANG Shouhua1(), ZHOU Ziyi1, MU Rende2, XIE Yun1, SHU Xiaoyong1, DAI Jianwei2, PENG Xiao1
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
Jingbo GUO, Shouhua YANG, Ziyi ZHOU, Rende MU, Yun XIE, Xiaoyong SHU, Jianwei DAI, Xiao PENG. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 217-223.

全文: PDF(7094 KB)   HTML
摘要: 

利用激光熔化沉积技术(LMD)增材制造了具有单相bcc结构的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 (原子分数)高熵合金(HEA),其晶粒尺寸随着激光功率从900 W降低至700 W而逐步减小。在1100 ℃“干”空气和含10%H2O (体积分数)的“湿”空气的恒温氧化实验表明:该HEA能稳定生长单一的Al2O3膜;晶粒尺寸减小导致所生长Al2O3膜的氧化速度降低;H2O蒸气加快Al2O3膜生长速度。

关键词 激光增材制造AlCoCrFeNiSi高熵合金高温氧化    
Abstract

High entropy alloy (HEA) of Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20 (atomic fraction) was fabricated by means of laser melting deposition (LMD) technique. The prepared alloy consists of a single body-centered-cubic (bcc) phase, and its grain size gradually refined as the laser power decreased from 900 W to 700 W. The bcc HEAs obtained at various laser powers were subjected to isothermal oxidation at 1100 oC in either dry air or wet air (air + 10%H2O (volume fraction)), respectively. There were several observations: all HEAs had the ability to thermally develop a protective scale of Al2O3 in both dry and wet airs; the decrease in grain size favored the formation of Al2O3 scale with a slower growth rate; the presence of H2O vapor accelerated the growth rate of Al2O3 scale. Finally, the above findings were discussed and interpreted.

Key wordslaser additive manufacturing    AlCoCrFeNiSi    high entropy alloy    high-temperature oxidation
收稿日期: 2024-09-25      32134.14.1005.4537.2024.313
ZTFLH:  TG174  
基金资助:国家自然科学基金(52371067)
通讯作者: 杨守华,E-mail:by2201158@buaa.edu.cn,研究方向为高熵合金高温氧化与防护
Corresponding author: YANG Shouhua, E-mail: by2201158@buaa.edu.cn
作者简介: 郭静波,男,1997年生,硕士

Scanning speed

/ mm·min-1

AlCoCrFeNi powder feeding speed

/ g·min-1

Si powder feeding speed

/ g·min-1

Spot diameter

/ mm

Overlap rate

/ %

Protective gas flow rate

/ L·min-1

Defocusing distance

/ mm

8003.40.18150155
表1  采用LMD制备Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20高熵合金的工艺参数
Laser powerAlCoCrFeNiSi
700 W18.917.115.412.816.819.0
800 W22.215.912.210.218.021.5
900 W22.017.912.08.520.019.6
表2  不同激光功率沉积的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20化学成分(原子分数,%) (atomic fraction / %)
图1  不同激光功率沉积的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20的XRD图谱
图2  700 W与900 W激光功率下沉积的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20腐刻后微观形貌与晶粒大小分布图,(a)中插图为放大图像
图3  不同激光功率沉积的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20在“干”空气中的氧化增重曲线及氧化增重平方随时间的变化曲线
图4  不同激光功率沉积的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20在“干”空气中氧化20 h后的截面形貌
图5  不同激光功率沉积的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20在“湿”空气中的氧化增重曲线及氧化增重平方随时间的变化曲线
图6  不同激光功率沉积的Al0.21Co0.17Cr0.13Fe0.11Ni0.18Si0.20在“湿”空气中氧化20 h后的截面形貌
图7  HEA中各组成元素及其氧化物的Ellingham-Richardson图
1 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
2 Wang Z F, Zhang S. Research and application progress of high-entropy alloys [J]. Coatings, 2023, 13: 1916
3 An Z B, Mao S C, Zhang Z, et al. Strengthening-Toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
3 安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
4 Manzoni A, Daoud H, Völkl R, et al. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy [J]. Ultramicroscopy, 2013, 132: 212
doi: 10.1016/j.ultramic.2012.12.015 pmid: 23352803
5 Yen C C, Lu H N, Tsai M H, et al. Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution [J]. Corros. Sci., 2019, 157: 462
6 Kao Y F, Chen T J, Chen S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al x CoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys [J]. J. Alloy. Compd., 2009, 488(1): 57
7 Wang Y P, Li B S, Ren M X, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2008, 491A: 154
8 Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
9 Munitz A, Salhov S, Hayun S, et al. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2016, 683: 221
10 Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys [J]. J. Alloy.Compd., 2016, 674: 229
11 Chen L J, Zhou Z, Tan Z, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys [J]. J. Alloy. Compd., 2018, 764: 845
12 Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
13 Yi H Q, Yang X Y, Yang Y, et al. New insights in the oxidation behavior of (FeCoCrNi)94Al4Ti2Si x high entropy alloys at 1100 oC [J]. Corros. Sci., 2024, 227: 111673
14 Li Y T, Zhang P, Zhang J Y, et al. Oxidation behavior of AlCoCrFeNiSi x high-entropy alloys at 1100 oC [J]. Corros. Sci., 2021, 190: 109633
15 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
16 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
17 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
18 Zhou Z Y, Peng X, Lü W Y, et al. Ultra-high temperature oxidation resistant refractory high entropy alloys fabricated by laser melting deposition: Al concentration regulation and oxidation mechan-ism [J]. Corros. Sci., 2023, 224: 111537
19 Tong Z P, Liu H L, Jiao J F, et al. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism [J]. Opt. Laser Technol., 2020, 130: 106326
20 Mohanty A, Sampreeth J K, Bembalge O, et al. High temperature oxidation study of direct laser deposited Al X CoCrFeNi (X = 0.3, 0.7) high entropy alloys [J]. Surf. Coat. Technol., 2019, 380: 125028
21 Zhou Z Y, Cui T Y, Guo H B, et al. Laser additively manufacturing of Al0.5CoCrFeNiTi0.5 high-entropy alloys with increased resistances to corrosion 3.5%NaCl and oxidation at 1000 oC [J]. J. Mater. Sci., 2023, 58: 10148
22 Zhou Z Y, Zhang X, Peng X, et al. Insights into the effects of grain size variation and FCC phase formation on the oxidation behavior of laser additively manufactured BCC AlCoCrFeNi high entropy alloy [J]. Corros. Sci., 2024, 239: 112416
23 Zhang Y C, Yang L, Dai J, et al. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition [J]. Opt. Laser Technol., 2016, 80: 220
24 Zhang W, Dong Z H, Kang H W, et al. Enhancement of strength-ductility balance of the laser melting deposited 12CrNi2 alloy steel via multi-step quenching treatment [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1234
25 Peng X, Wang F H. High temperature corrosion of nanocrystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202
25 彭 晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202
26 Peng X. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites [J]. Nanoscale, 2010, 2: 262
doi: 10.1039/b9nr00118b pmid: 20644803
27 Yang X, Peng X, Xu C M, et al. Electrochemical assembly of Ni-xCr-yAl nanocomposites with excellent high-temperature oxidation resistance [J]. J. Electrochem. Soc., 2009, 156: C167
28 Xie L P, Chen M H, Wang J L, et al. High temperature oxidation behavior of ultrafine grained ODS Nickel-based superalloy prepared by spark plasma sintering [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 709
28 解磊鹏, 陈明辉, 王金龙 等. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 709
doi: 10.11902/1005.4537.2021.237
29 Wagner C. Reaction types in the oxidation of alloys [J]. Z. Elektrochem., 1959, 63: 772
30 Maris-Sida M C, Meier G H, Pettit F S. Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers [J]. Metall. Mater. Trans., 2003, 34A: 2609
31 Young D J. Effects of water vapour on the oxidation of chromia formers [J]. Mater. Sci. Forum, 2008, 595-598: 1189
[1] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[2] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[3] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[4] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[5] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[6] 张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[7] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[8] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[9] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[10] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[11] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[12] 潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[13] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[14] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[15] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.