Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 173-181     CSTR: 32134.14.1005.4537.2024.268      DOI: 10.11902/1005.4537.2024.268
  研究报告 本期目录 | 过刊浏览 |
Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究
裴海清1, 肖竞博2, 李微2(), 于昊玉1, 温志勋1, 岳珠峰1
1 西北工业大学力学与土木建筑学院 清洁高效透平动力装备全国重点实验室 西安 710129
2 长沙理工大学能源与动力工程学院 长沙 410114
First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy
PEI Haiqing1, XIAO Jingbo2, LI Wei2(), YU Haoyu1, WEN Zhixun1, YUE Zhufeng1
1 State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China
2 School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
引用本文:

裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
Haiqing PEI, Jingbo XIAO, Wei LI, Haoyu YU, Zhixun WEN, Zhufeng YUE. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 173-181.

全文: PDF(11043 KB)   HTML
摘要: 

采用第一性原理计算和氧化实验相结合的方式研究了镍基单晶高温合金氧化层的演化机理。通过分析界面粘附能和电荷分布,Al-O结构被确定为最稳定的NiAl/NiO界面模型。考虑了O原子和Al原子对界面稳定性的影响,O原子和Al原子在界面处的聚集均削弱了NiAl/NiO界面的结合强度,这意味着界面更容易发生分离。采用XRD、EDS、SEM等方法研究了镍基单晶高温合金的氧化行为,并建立了氧化动力学模型。结果表明,合金氧化过程中首先形成NiO,随后在NiO下方形成Al2O3。随着O原子和Al原子在界面处的聚集,NiO倾向于从合金表面分离。通过将第一性原理计算与氧化实验相结合,揭示了镍基单晶高温合金的氧化层演化机理。

关键词 镍基单晶高温合金高温氧化第一性原理氧化动力学微观结构演化    
Abstract

Ni-based single crystal superalloys have been widely used as materials for aircraft engine turbine blades due to their excellent high-temperature mechanical properties. The harsh service environment can lead to severe oxidation of the superalloys for turbine blades. In contrast to the high-temperature mechanical properties, further research is needed on the oxidation behavior of the Ni-based single crystal superalloys. Herein, the evolution mechanism of the oxide scale on Ni-based single crystal superalloy has been studied through first-principles calculations and oxidation experiments. By analyzing the interface adhesion energy and charge distribution, while taking the impact of O and Al atoms on the interface stability into account, it is determined that the Al-O structure has been identified as the most stable NiAl/NiO interface model. The aggregation of O and Al atoms at the interface may weaken the bonding strength of the NiAl/NiO interface, which means that the interface tends to be separated easily. The oxidation behavior of the alloy was examined using XRD, EDS, SEM, etc., in terms of the oxidation kinetics of the alloy, as well as the morphology and phase composition of the oxide scales. Results indicate that NiO forms initially during the alloy oxidation, followed by Al2O3 beneath NiO. As O and Al atoms aggregate at the interface, NiO tends to separate from the alloy surface. By combining first-principles calculations with the oxidation test results, the mechanism of evolution of the oxide scale on the alloy was ultimately elucidated.

Key wordsNi-based single crystal superalloy    high-temperature oxidation    first principles    oxidation kinetics    microstructural evolution
收稿日期: 2024-08-25      32134.14.1005.4537.2024.268
ZTFLH:  V252  
基金资助:国家自然科学基金(52105147);国家技术基础项目(JSXX2021607A0XX)
通讯作者: 李微,E-mail:lwzzgjajie@126.com,研究方向为动力机械零构件服役性能
Corresponding author: LI Wei, E-mail: lwzzgjajie@126.com
作者简介: 裴海清,男,1990年生,博士,副教授
图1  模型建立流程图
Metala / nm
This studyTest resultCalculation result
NiAl0.2900.286[29]0.290[30]
NiO0.4180.419[31]0.417[31]
表1  NiAl与NiO晶格常数
ElementCrCoWMoAlTaReNbHfNi
Mass fraction / %4.09.08.02.05.77.02.21.01.0Bal.
Atomic fraction / %5.010.03.01.013.02.00.70.60.4Bal.
表2  采用的镍基单晶高温合金材料化学成分
图2  镍基单晶高温合金的微观组织形貌
图3  NiAl/NiO体系ELF投影图
图4  NiAl/NiO-1Al,NiAl/NiO-2Al,NiAl/NiO-1O和NiAl/NiO-2O界面模型示意图
图5  NiAl/NiO,NiAl/NiO-1Al,NiAl/NiO-2Al,NiAl/NiO-1O与NiAl/NiO-2O体系ELF投影图
图6  单晶合金在1000 ℃下200 h氧化的动力学曲线以及抛物线氧化常数Kp与文献对比图[38]
图7  单晶合金样品在1000 ℃下氧化不同时间后的宏观形貌
图8  单晶合金样品在1000 ℃下氧化不同时间后的XRD谱图
图9  单晶合金样品在1000 ℃下氧化不同时间后的表面微观形貌
图10  单晶合金样品在1000 ℃下氧化40 h后的截面形貌和元素含量沿分析线变化
图11  图9中标记点1至5的化学成分分析
图12  单晶合金在1000 ℃下氧化层生长机理图
1 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
2 Behera A, Sahoo A K, Mahapatra S S. Application of Ni-based superalloy in aero turbine blade: a review [J]. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng., 2023: 09544089231219104
3 Li F, Wen Z X, Luo L, et al. Fatigue life estimation of nickel-based single crystal superalloy with different inclined film cooling holes: initial damage quantification and coupling of damage-fracture mechanics models [J]. Int. J. Plast., 2024, 176: 103967
4 Lu P, Jin X C, Li P, et al. Crystal plasticity constitutive model and thermodynamics informed creep-fatigue life prediction model for Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2023, 176: 107829
5 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
6 Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
7 Wen Z X, Li F, Li M. Evaluation method of equivalent initial flaw size and fatigue life prediction of nickel-based single crystal superalloy [J]. Multidiscip. Model. Mater. Struct., 2023, 19: 1311
8 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
9 Yang Y F, Sun W Y, Chen M H, et al. Oxidation behavior of a single crystal Ni-based superalloy N5 and its nanocrystalline coating at 900 oC in O2 and O2 + 20%H2O environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 55
9 杨依凡, 孙文瑶, 陈明辉 等. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2 + 20%H2O气氛中的氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 55
doi: 10.11902/1005.4537.2022.040
10 Chen Y, Yao Z H, Dong J X, et al. Molecular dynamics simulation of the γ′ phase deformation behaviour in nickel-based superall-oys [J]. Mater. Sci. Technol., 2022, 38: 1439
11 Mukherji D, Gilles R, Strunz P, et al. Measurement of γ′ precipitate morphology by small angle neutron scattering [J]. Scr. Mater., 1999, 41: 31
12 Yang Y Q, Zhao Y C, Wen Z X, et al. Synergistic effect of multiple molten salts on hot corrosion behaviour of Ni-based single crystal superalloy [J]. Corros. Sci., 2022, 204: 110381
13 Montero X, Ishida A, Meißner T M, et al. Effect of surface treatment and crystal orientation on hot corrosion of a Ni-based single-crystal superalloy [J]. Corros. Sci., 2020, 166: 108472
14 Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750 oC [J]. Corros. Sci., 2021, 185: 109419
15 Liu C, Yang W C, Cao K L, et al. New insights into the microstructural stability based on the element segregation behavior at γ/γ′ interface in Ni-based single crystal superalloys with Ru addition [J]. J. Mater. Sci. Technol., 2023, 154: 232
16 Sun J Y, Li Q S, Guo H B, et al. Effect of interdiffusion between Ni-Al coating and substrate on microstructure stability of single crystal superalloy [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 497
16 孙井永, 李秋实, 郭洪波 等. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 497
doi: 10.11902/1005.4537.2016.130
17 Zhang J C, Lu F, Zhang C, et al. On the tungsten segregation at γ/γ′interface in a Ni-based single-crystal superalloy [J]. Vacuum, 2022, 197: 110863
18 Ding Q Q, Shen Z J, Xiang S S, et al. In-situ environmental TEM study of γ′-γ phase transformation induced by oxidation in a nickel-based single crystal superalloy [J]. J. Alloy. Compd., 2015, 651: 255
19 Sun X Y, Zhang L F, Pan Y M, et al. Microstructural evolution during cyclic oxidation of a Ni-based singe crystal superalloy at 1100 oC [J]. Corros. Sci., 2020, 162: 108216
20 Ren C L, Han H, Gong W B, et al. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: fluorine-induced initial corrosion of non-passivated Ni-based alloy [J]. J. Nucl. Mater., 2016, 478: 295
21 Ding M Q, Hu P, Ru Y, et al. Effects of rare-earth elements on the oxidation behavior of γ-Ni in Ni-based single crystal superalloys: a first-principles study from a perspective of surface adsorption [J]. Appl. Surf. Sci., 2021, 547: 149173
22 Wei B X, Chen C J, Xu J, et al. Comparing the hot corrosion of (100), (210) and (110) Ni-based superalloys exposed to the mixed salt of Na2SO4-NaCl at 750 oC: experimental study and first-principles calculation [J]. Corros. Sci., 2022, 195: 109996
23 Pei H Q, Wen Z X, Li Z W, et al. Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7Al single crystal superalloy [J]. Appl. Surf. Sci., 2018, 440: 790
24 Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Matter, 2002, 14: 2717
25 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
26 Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction [J]. J. Comput. Chem., 2006, 27: 1787
27 Pfrommer B G, Côté M, Louie S G, et al. Relaxation of crystals with the quasi-Newton method [J]. J. Comput. Phys., 1997, 131:233
28 Byrd R H, Nocedal J, Schnabel R B. Representations of quasi-Newton matrices and their use in limited memory methods [J]. Math. Program., 1994, 63: 129
29 Taylor A, Doyle N J. Further studies on the nickel-aluminium system. I. β-NiAl and δ-Ni2Al3 phase fields [J]. J. Appl. Crystallogr., 1972, 5: 201
30 Cao Y, Zhu P X, Zhu J C, et al. First-principles study of NiAl alloyed with Co [J]. Comput. Mater. Sci., 2016, 111: 34
31 Dudarev S L, Botton G A, Savrasov S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study [J]. Phys. Rev., 1998, 57B: 1505
32 Lu T, Chen F W. Meaning and functional form of the electron localization function [J]. Acta Phys. -Chim. Sin., 2011, 27: 2786
33 Becke A D, Edgecombe K E. A simple measure of electron localization in atomic and molecular systems [J]. J. Chem. Phys., 1990, 92: 5397
34 Wang Z W, Pei H Q, Shang J, et al. First-principles thermodynamics and experimental study of interface oxidation in Ni/Ni3Al structures [J]. Phys. Chem. Chem. Phys., 2019, 21: 18316
35 Mishin Y, Farkas D. Atomistic simulation of point defects and diffusion in B2 NiAl: Part I. Point defect energetics [J]. Philos. Mag., 1997, 75A: 169
36 Liu C T, Ma J, Sun X F. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000 oC in air [J]. J. Alloy. Compd., 2010, 491: 522
37 Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications [J]. Acta Mater., 2011, 59: 225
38 Schütze M. Corrosion and environmental degradation [J]. Prakt. Metallogr., 2000, 37: 2
[1] 张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[2] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[3] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[4] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[5] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[6] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[7] 陈郑, 宇文佩, 温思涵, 李美凤, 沙江波, 周春根. B添加对MoSi2 基化合物抗氧化性能影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 224-230.
[8] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[9] 董楠, 秦慰蓉, 韩培德. SCl表面吸附及其对 γ-FeM(111)(M = CrNiMnMoCuCe)腐蚀的理论研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[10] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[11] 李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[12] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[13] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[14] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[15] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.