Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 224-230     CSTR: 32134.14.1005.4537.2024.233      DOI: 10.11902/1005.4537.2024.233
  研究报告 本期目录 | 过刊浏览 |
B添加对MoSi2 基化合物抗氧化性能影响的第一性原理研究
陈郑1, 宇文佩2(), 温思涵2, 李美凤2, 沙江波2, 周春根2
1 郑州航空工业管理学院航空发动机学院 郑州 450046
2 北京航空航天大学材料科学与工程学院 北京 100191
First Principles Study on Effect of B Addition on Oxidation Resistance of MoSi2-based Compound
CHEN Zheng1, YUWEN Pei2(), WEN Sihan2, LI Meifeng2, SHA Jiangbo2, ZHOU Chungen2
1 School of Aero Engine, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

陈郑, 宇文佩, 温思涵, 李美凤, 沙江波, 周春根. B添加对MoSi2 基化合物抗氧化性能影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 224-230.
Zheng CHEN, Pei YUWEN, Sihan WEN, Meifeng LI, Jiangbo SHA, Chungen ZHOU. First Principles Study on Effect of B Addition on Oxidation Resistance of MoSi2-based Compound[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 224-230.

全文: PDF(8111 KB)   HTML
摘要: 

基于第一性原理计算方法探讨了B添加对化合物偶MoSi2/MoB氧化行为的影响。结果表明,初始氧化阶段MoSi2/MoB两化合物界面处和MoB相具有较低的氧的吸附能、氧通过MoSi2/MoB两化合物界面的扩散激活能较低,导致化合物表面更容易发生快速氧化,有利于保护性氧化膜的快速形成;当氧化过程达到稳定阶段时,化合物表面含有6%B (原子分数)的硼硅酸盐具有最低的氧扩散系数,具有更好的抗氧化性能。因而,精确控制B掺杂量是设计抗氧化的MoSi2基化合物Mo-Si-B的有效策略。

关键词 Mo-Si-BMoSi2/MoB硼硅酸盐第一性原理计算    
Abstract

Based on the first-principles calculation method, the influence of B addition on the oxidation behavior of compound pair MoSi2/MoB was comprehensively investigated. The results showed that the oxygen adsorption energy at the interface of compound pair MoSi2/MoB, and of the compound MoB itself is lower and the diffusion activation energy of oxygen atom passing through the interface MoSi2/MoB is also lower, which may facilitate the rapid oxidation of the compound surface during the initial oxidation stage and enable the rapid formation of a protective oxide scale. When the oxidation process reached a stable state, a scale of borosilicate with 6%B (atomic fraction) may form on the compound surface with the lowest oxygen diffusion coefficient, namely, excellent oxidation resistance of the oxide scale. Therefore, precise control of B-doping is a promising strategy for designing MoSi2-based compound Mo-Si-B of high oxidation resistance.

Key wordsMo-Si-B    MoSi2/MoB    borosilicate    first-principle calculation
收稿日期: 2024-07-30      32134.14.1005.4537.2024.233
ZTFLH:  TG174.445  
基金资助:国家自然科学基金(51431003);国家自然科学基金联合基金(U1435201)
通讯作者: 宇文佩,E-mail:ywp1991@buaa.edu.cn,研究方向高温合金腐蚀与防护
Corresponding author: YUWEN Pei, E-mail: ywp1991@buaa.edu.cn
作者简介: 陈 郑,男,1993年生,博士生
图1  模拟的不同材料原子结构模型
图2  计算氧吸附能的MoSi2/MoB模型
ModelPositionEadsorption / eV
MoSi2/MoBO occupy surface site of MoSi2-6.078
O occupy surface site of MoB②-6.793
O occupy surface site of MoSi2/MoB③-8.306
O occupy the site inside MoSi2-6.363
O occupy the site inside MoB⑤-3.004
O occupy the site inside MoSi2/MoB⑥-5.337
表1  几个吸附位点的氧吸附能
图3  计算氧扩散激活能的MoSi2/MoB模型
图4  氧沿不同途径扩散到化合物中相应的扩散激活能
图5  MoSi2被无定形SiO2 (0%B)及不同B含量的硼硅酸盐覆盖的模型

Diffusivity

coefficient

Amorphous SiO22%B- borosilicate4%B- borosilicate6%B- borosilicate8%B- borosilicate10%B- borosilicate
O17.987 × 10-817.683 × 10-817.062 × 10-814.192 × 10-816.085 × 10-817.346 × 10-8
Si5.162 × 10-85.659 × 10-86.440 × 10-86.672 × 10-85.126 × 10-84.923 × 10-8
B-10.800 × 10-813.568 × 10-812.699 × 10-814.151 × 10-811.115 × 10-8
表2  O、Si和B在不同 B含量的硼硅酸盐中的扩散系数 (m2/s)
ModelsEcohesive / eVHformation / eV
Amorphous SiO2 (0%B)-6.339-2.436
2%B-content in borosilicate-6.445-2.454
4%B-content in borosilicate-6.512-2.471
6%B-content in borosilicate-6.788-2.553
8%B-content in borosilicate-6.366-2.281
10%B-content in borosilicate-6.241-2.214
表3  不同B含量的硼硅酸盐的形成焓Hformation和内聚能Ecohesive
图6  Mo-Si-B化合物1250 ℃静态氧化动力学曲线
1 Murayama Y, Hanada S. High temperature strength, fracture toughness and oxidation resistance of Nb-Si-Al-Ti multiphase alloys [J]. Sci. Technol. Adv. Mater., 2002, 3: 145
2 Subramanian P R, Mendiratta M G, Dimiduk D M, et al. Advanced intermetallic alloys-beyond gamma titanium aluminides [J]. Mater. Sci. Eng., 1997, 239-240A: 1
3 Guo X P, Gao L M, Guan P, et al. Microstructure and mechanical properties of an advanced niobium based ultrahigh temperature alloy [J]. Mater. Sci. Forum, 2007, 539-543: 3690
4 Voglewede B, Rangel V R, Varma S K. The effects of uncommon silicides on the oxidation behavior of alloys from the Nb-Cr-Si system [J]. Corros. Sci., 2012, 61: 123
5 Geng J, Tsakiropoulos P. A study of the microstructures and oxidation of Nb-Si-Cr-Al-Mo in situ composites alloyed with Ti, Hf and Sn [J]. Intermetallics, 2007, 15: 382
6 Zelenitsas K, Tsakiropoulos P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800 oC [J]. Mater. Sci. Eng., 2006, 416A: 269
7 Sun Z P, Guo X P, Tian X D, et al. Effects of B and Si on the fracture toughness of the Nb-Si alloys [J]. Intermetallics, 2014, 54: 143
8 Liu Z D, Hou S X, Liu D Y, et al. An experimental study on synthesizing submicron MoSi2-based coatings using electrothermal explosion ultra-high speed spraying method [J]. Surf. Coat. Technol., 2008, 202: 2917
9 Qiao Y Q, Guo X P. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process [J]. Appl. Surf. Sci., 2010, 256: 7462
10 Wei L, Shao W, Li M F, et al. Hot corrosion behaviour of Mo-62Si-5B (at.%) alloy in different molten salts at 900 oC [J]. Corros. Sci., 2019, 158: 108099
11 Pang J, Wang W, Zhou C G. Microstructure evolution and oxidation behavior of B modified MoSi2 coating on Nb-Si based alloys [J]. Corros. Sci., 2016, 105: 1
12 Sakidja R, Park J S, Hamann J, et al. Synthesis of oxidation resistant silicide coatings on Mo-Si-B alloys [J]. Scr. Mater., 2005, 53: 723
13 Chen Z, Shao W, Li M F, et al. Effect of minor B modification on the oxidation behavior of MoSi2 alloy at high temperature [J]. Corros. Sci., 2023, 216: 111070
14 Wen S H, Zhou C G, Sha J B. Microstructural evolution and oxidation behaviour of Mo-Si-B coatings on an Nb-16Si-22Ti-7Cr-2Al-2Hf alloy at 1250 oC prepared by spark plasma sintering [J]. Surf. Coat. Technol., 2018, 352: 320
15 Du W, Zhang L Q, Ye F, et al. Intrinsic embrittlement of MoSi2 and alloying effect on ductility: studied by first-principles [J]. Phys. Condens. Matter, 2010, 405B: 1695
16 Wang S, Pang X J, Xu Y J, et al. Microstructure, mechanical and tribological properties of in situ MoB reinforced Cu-Al matrix composites [J]. Tribol. Int., 2023, 177: 107941
17 Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys. Condens. Matter, 2002, 14: 2717
18 Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO [J]. Surf. Coat. Technol., 2011, 205: 5178
19 Fischer T H, Almlöf J. General methods for geometry and wave function optimization [J]. J. Phys. Chem., 1992, 96: 9768
20 Ritt P, Sakidja R, Perepezko J H. Mo-Si-B based coating for oxidation protection of SiC-C composites [J]. Surf. Coat. Technol., 2012, 206: 4166
21 Lemberg J A, Ritchie R O. Mo-Si-B alloys for ultrahigh-temperature structural applications [J]. Adv. Mater., 2012, 24: 3445
22 Delley B. Analytic energy derivatives in the numerical local-density-functional approach [J]. J. Chem. Phys., 1991, 94: 7245
23 Zheng H Z, Chen Z, Li G F, et al. High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits: first-principles calculations [J]. Corros. Sci., 2017, 126: 286
24 Zoroddu A, Bernardini F, Ruggerone P, et al. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory [J]. Phys. Rev., 2001, 64B: 045208
25 Zhang J H, Duan Y H, Li C X. A First-principles investigation of structural properties, electronic structures and optical properties of β- and γ-LiAl(SiO3)2 [J]. Ceram. Int., 2017, 43: 13948
26 Yoshimi K, Nakatani S, Suda T, et al. Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures [J]. Intermetallics, 2002, 10: 407
[1] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[3] 严密; 张小星; 吴磊 . 超声化学镀对烧结钕铁硼磁体抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2006, 26(2): 100-102 .
[4] 袁庆龙; 张跃飞; 苏永安; 池成忠; 唐宾; 徐重 . 纯铜等离子渗钛层的氧化机理分析[J]. 中国腐蚀与防护学报, 2005, 25(2): 102-105 .