|
|
CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用 |
陈丽娟1, 晁刘伟2, 赵景茂2( ) |
1.中国石油工程建设有限公司北京设计分公司 北京 100085 2.北京化工大学材料科学与工程学院 北京 100029 |
|
Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate |
CHEN Lijuan1, CHAO Liuwei2, ZHAO Jingmao2( ) |
1.Beijing Engineering Branch, China Petroleum Engineering & Construction Co., Ltd., Beijing 100085, China 2.College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
引用本文:
陈丽娟, 晁刘伟, 赵景茂. CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
Lijuan CHEN,
Liuwei CHAO,
Jingmao ZHAO.
Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 664-674.
[1] |
Long W J, Tang J, Luo Q L, et al. Corrosion inhibition performance of biomass-derived carbon dots on Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 807
|
[1] |
龙武剑, 唐 杰, 罗启灵 等. 生物质碳点对Q235钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 807
doi: 10.11902/1005.4537.2023.233
|
[2] |
Hu Y F, Cao X K, Ma X Z, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 460
|
[2] |
胡云飞, 曹祥康, 马小泽 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化 [J]. 中国腐蚀与防护学报, 2023, 43: 460
doi: 10.11902/1005.4537.2022.202
|
[3] |
Chen Y N, Wu L, Yao W H, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130: 12
doi: 10.1016/j.jmst.2022.03.039
|
[4] |
Dao X L, Nie M, Sun H, et al. Electrochemical performance of metal-organic framework MOF(Ni) doped graphene [J]. Int. J. Hydrog. Energ., 2022, 47: 16741
|
[5] |
Yu F, Wang X, Zhang Z. Research progress of nanofillers for epoxy anti-corrosion coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 220
|
[5] |
于 芳, 王 翔, 张 昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 220
|
[6] |
Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers [J]. Angew. Chem.-Int. Edit., 2004, 43: 2334
|
[7] |
Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature, 1995, 378: 703
|
[8] |
Zhang Z C, Chen Y F, He S, et al. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions [J]. Angew. Chem., 2014, 126: 12725
|
[9] |
Panella B, Hirscher M, Pütter H, et al. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared [J]. Adv. Funct. Mater., 2006, 16: 520
|
[10] |
Chen H D, Yu Z X, Cao K Y, et al. Preparation of a BTA-UIO-GO nanocomposite to endow coating systems with active inhibition and passive anticorrosion performances [J]. New J. Chem., 2021, 45: 16069
|
[11] |
Chen S R, Chen W G, Qian Y, et al. Preparation and perfromance of rare earth cerium modified graphene oxide/waterborne epoxy resin composite coating [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 107
|
[11] |
陈施润, 陈文革, 钱 颖 等. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究 [J]. 中国腐蚀与防护学报, 2024, 44: 107
|
[12] |
Xuan X Y, Qu S P, Zhao X Y. Preparation and performance of CeO2@MWCNTs/EP composite coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 992
|
[12] |
轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 992
doi: 10.11902/1005.4537.2022.307
|
[13] |
Cai G Y, Wang H W, Zhao W H, et al. Effect of Nano-CeO2 on anticorrosion performance for polyurethane coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 411
|
[13] |
蔡光义, 王浩伟, 赵苇杭 等. 添加纳米CeO2对聚氨酯涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 411
doi: 10.11902/1005.4537.2016.147
|
[14] |
Wang T Y, Zhao C, Meng L H, et al. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: a novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination [J]. Chem. Eng. J., 2023, 451: 138624
|
[15] |
Wu Y M, Wu Y H, Sun Y X, et al. 2D nanomaterials reinforced organic coatings for marine corrosion protection: state of the art, challenges, and future prospectives [J]. Adv. Mater., 2024, 18: e2312460
|
[16] |
Li Y H, Yi X H, Li Y X, et al. Robust Cr(VI) reduction over hydroxyl modified UiO-66 photocatalyst constructed from mixed ligands: performances and mechanism insight with or without tartaric acid [J]. Environ. Res., 2021, 201: 111596
|
[17] |
Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G, et al. Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF) [J]. Chem. Eng. J., 2021, 408: 127361
|
[18] |
Bai Y, Dou Y B, Xie L H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications [J]. Chem. Soc. Rev., 2016, 45: 2327
doi: 10.1039/c5cs00837a
pmid: 26886869
|
[19] |
Wang J B, Zhao J M, Tabish M, et al. Intelligent anticorrosion coating based on mesostructured BTA@mCeO2/g-C3N4 nanocomposites for inhibiting the filiform corrosion of Zn-Mg-Al coated steel [J]. Corros. Sci., 2023, 221: 111331
|
[20] |
Kordas G. Nanocontainers (CeO2): synthesis, characterization, properties, and anti-corrosive application [A]. HussainCM, VermaC. Sustainable Corrosion Inhibitors II: Synthesis, Design, and Practical Applications [M]. Washington: American Chemical Society, 2021, 27: 177
|
[21] |
Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
|
[22] |
Ramezanzadeh M, Ramezanzadeh B, Mahdavian M, et al. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings [J]. Carbon, 2020, 161: 231
|
[23] |
He H M, Sun Q, Gao W Y, et al. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation [J]. Angew. Chem., 2018, 130: 4747
|
[24] |
Bůžek D, Demel J, Lang K. Zirconium metal-organic framework UiO-66: stability in an aqueous environment and its relevance for organophosphate degradation [J]. Inorg. Chem., 2018, 57: 14290
doi: 10.1021/acs.inorgchem.8b02360
pmid: 30371080
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|