Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 653-663     CSTR: 32134.14.1005.4537.2024.171      DOI: 10.11902/1005.4537.2024.171
  研究报告 本期目录 | 过刊浏览 |
静水压力对吉帕级海工钢母材及焊材腐蚀行为的影响
王亚东1, 马荣耀2(), 万晔1(), 董俊华2
1.沈阳建筑大学材料科学与工程学院 沈阳 110168
2.中国科学院金属研究所 沈阳 110016
Influence of Hydrostatic Pressure on Corrosion Behavior of Base Metaland Welded Joint of GPa-grade Offshore Engineering Steel in 3.5%NaCl Solution
WANG Yadong1, MA Rongyao2(), WAN Ye1(), DONG Junhua2
1.School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王亚东, 马荣耀, 万晔, 董俊华. 静水压力对吉帕级海工钢母材及焊材腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 653-663.
Yadong WANG, Rongyao MA, Ye WAN, Junhua DONG. Influence of Hydrostatic Pressure on Corrosion Behavior of Base Metaland Welded Joint of GPa-grade Offshore Engineering Steel in 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 653-663.

全文: PDF(10402 KB)   HTML
摘要: 

本文采用线性极化电阻(LPR)、电化学阻抗谱(EIS)、动电位极化及电化学噪声方法(EN)研究了不同静水压力(0.1、6和12 MPa)对一种吉帕级海工钢母材及其焊缝金属在3.5%NaCl溶液中腐蚀行为的影响。结果表明:在不同静水压力条件下,吉帕级海工钢母材的耐蚀性优于焊缝金属;静水压力对吉帕级海工钢母材及焊缝金属的阴极过程影响较小,但可促进其阳极溶解过程,从而加速吉帕级海工钢母材及焊缝金属的腐蚀速率;提高静水压力使吉帕级海工钢母材及焊缝金属的局部腐蚀倾向增大。

关键词 静水压力吉帕级海工钢母材焊缝电化学噪声    
Abstract

The effect of different hydrostatic pressures (0.1, 6, and 12 MPa) on the corrosion behavior of the base metal and welded joint for a GPa-grade offshore engineering steel in a 3.5%NaCl solution was investigated by using linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and electrochemical noise (EN) methods. The results indicate that in conditions of various hydrostatic pressures, the corrosion resistance of the base metal of the GPa-grade offshore engineering steel is better than that of the welded joint. Hydrostatic pressure has a minor impact on the cathodic process of both the matrix and the welded joint, but it can promote their anodic dissolution process, thereby accelerating the corrosion rate of both. With the increasing hydrostatic pressure, the local corrosion susceptibility of both the base metal and welded joint of GPa-grade offshore engineering steel was enhanced.

Key wordshydrostatic pressure    GPa-grade offshore engineering steel    base material    welded joint    electrochemical noise
收稿日期: 2024-05-31      32134.14.1005.4537.2024.171
ZTFLH:  TG172  
基金资助:辽宁省科技重大专项(2020JH1/10100001);国家自然科学基金(52201094)
通讯作者: 马荣耀,E-mail:ryma14b@imr.ac.cn,研究方向为金属腐蚀与防护; 万 晔,E-mail:ywan@sjzu.edu.cn,研究方向为先进材料的制备与性能研究、材料腐蚀与防护
Corresponding author: MA Rongyao, E-mail: ryma14b@imr.ac.cn; WAN Ye, E-mail: ywan@sjzu.edu.cn
作者简介: 王亚东,男,1998年生,硕士生
图1  吉帕级海工钢母材及焊缝的金相组织SEM照片
图2  吉帕级海工钢母材及焊缝在0.1和12 MPa 3.5%NaCl溶液中腐蚀后表面形貌
图3  吉帕级海工钢母材及焊缝在不同静水压力下的极化曲线
MaterialsPressure / MPaEcorr / VIcorr / μA·cm-2
Matrix0.1-0.5333.154
6-0.5893.851
12-0.5925.503
Welded0.1-0.5863.275
6-0.5945.978
12-0.6126.575
表1  根据极化曲线拟合所得Ecorr及Icorr参数
图4  吉帕级海工钢母材及焊缝在不同静水压力下的RLPR
图5  吉帕级海工钢母材及焊缝在不同静水压力下的EIS图
图6  用于拟合EIS的等效电路
MaterialPressureRsQo, YQo, nRoWoQa, YQa, nRa
MPaΩ·cm2mS·s n ·cm2-Ω·cm2mS·s0.5·cm2mS·s n ·cm2-Ω·cm2
Matrix0.16.441.35 × 10-30.87525693.95 × 10-24.29 × 10-40.59717.24
66.791.45 × 10-30.92023901.74 × 10-23.34 × 10-20.60513.31
126.891.19 × 10-30.86421461.65 × 10-34.55 × 10-30.58412.84
Welded0.16.689.18 × 10-40.90224361.24 × 10-22.60 × 10-30.63314.59
66.561.90 × 10-30.75822371.88 × 10-25.01 × 10-30.6325.525
127.587.46 × 10-51.00019918.45 × 10-38.55 × 10-40.8560.687
表2  根据电化学阻抗拟合所得参数
图7  母材及焊缝金属分别在0.1和12 MPa下电化学电位噪声去直流漂移后的噪声图谱
图8  母材及焊缝金属分别在0.1和12 MPa下电化学电流噪声去直流漂移后的噪声图谱
图9  吉帕级海工钢在静水压力分别为0.1和12 MPa的3.5%NaCl中的q vs fn 图
图10  吉帕级海工钢母材及焊缝金属在静水压力分别为0.1和12 MPa的3.5%NaCl中典型EPN的Hilbert谱
图11  吉帕级海工钢母材及焊缝金属在静水压力分别为0.1和12 MPa的3.5%NaCl中Hilbert边际谱
[1] Jia H G. Research on property of Zn reference sacrificial electrode and aluminium alloy anodes under deep-sea simulation [D]. Qingdao: Ocean University of China, 2014
[1] 贾红刚. 模拟深海环境下锌参比电极与铝合金牺牲阳极性能研究 [D]. 青岛: 中国海洋大学, 2014
[2] Sun H J. Study on the corrosion behavior of low alloy steel and cathodic protection properties of sacrificial anode in deep sea environment [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2013
[2] 孙海静. 深海环境下低合金钢的腐蚀行为及其牺牲阳极阴极保护研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2013
[3] Wang J L. The manufacture of experiment equipment for simulated deep sea pressure and study on the influence of deep sea pressure on corrosion behaviors of Q235 mild steel and 316L stainless steel [D]. Qingdao: Ocean University of China, 2013
[3] 王金龙. 模拟深海压力实验装置的制备以及压力对Q235碳钢和316L不锈钢腐蚀行为的影响 [D]. 青岛: 中国海洋大学, 2013
[4] Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment [J]. Int. J. Hydrog. Energy, 2017, 42: 27446
[5] Yang Z X, Kan B, Li J X, et al. A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials (Basel), 2017, 10: 1307
[6] Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminium in sea water [J]. Br. Corros. J., 1985, 20: 183
[7] Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminium alloy in sea water [J]. Br. Corros. J., 1994, 29: 65
[8] Beccaria A M, Poggi G. Influence of hydrostatic pressure and salt concentration on aluminum corrosion in NaCl solutions [J]. Corrosion, 1986, 42: 470
[9] Beccaria A M, Poggi G. Aluminum corrosion in slightly alkaline sodium sulfate solutions at different hydrostatic pressures [J]. Corrosion, 1987, 43: 153
[10] Beccaria A M, Ltraverso P, Poggi G, et al. Effect of hydrostatic pressure on corrosion behaviour of 5086 Al-alloy in sea water [J]. High Press. Res., 1991, 7: 347
[11] Beccaria A M, Poggi G. Effect of some surface treatments on kinetics of aluminium corrosion in NaCl solutions at various hydrostatic pressures [J]. Br. Corros. J., 1986, 21: 19
[12] Beccaria A M, Fiordiponti P, Mattogno G. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl- ions [J]. Corros. Sci., 1989, 29: 403
[13] Beccaria A M, Poggi G, Arfelli M, et al. The effect of salt concentration on nickel corrosion behaviour in slightly alkaline solutions at different hydrostatic pressures [J]. Corros. Sci., 1993, 34: 989
[14] Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
[15] Zheng J Q. Research of prosess of pitting corrosion of stainless steels in simulated deep-sea environment [D]. Zhenjiang: Jiangsu University of Science and Technology, 2011
[15] 郑家青. 模拟深海环境下不锈钢点蚀性能研究 [D]. 镇江: 江苏科技大学, 2011
[16] Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure [J]. Electrochim. Acta, 2016, 210: 401
[17] Wang Z Y, Cong Y, Zhang T. Effect of hydrostatic pressure on the pitting corrosion behavior of 316l stainless steel [J]. Int. J. Electrochem. Sci., 2014, 9: 778
[18] Cong Y. Effect of crevice and hydrostatic pressure on the corrosion behaviors of 316L stainless steel [D]. Harbin: Harbin Engineering University, 2010
[18] 丛 园. 缝隙和静水压力环境对316L不锈钢腐蚀行为的影响 [D]. 哈尔滨: 哈尔滨工程大学, 2010
[19] Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
[20] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
[21] Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2013, 73: 250
[22] Wang J B. Study on corrosion of X80 pipeline steel welded joint and its mechanism [D]. Ji'nan: Qilu University of Technology, 2021
[22] 王建保. X80管线钢焊接接头腐蚀行为及其机理研究 [D]. 济南: 齐鲁工业大学, 2021
[23] Li Y. Study on stress corrosion behavior of welded joints of marine steel in simulated marine environment [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023
[23] 李 洋. 船用钢焊接接头在模拟海洋环境下的应力腐蚀行为研究 [D]. 镇江: 江苏科技大学, 2023
[24] Yin B. Study on corrosion resistance of offshore platform steel A710 welded joint [J]. Hot Work. Technol., 2018, 47(3): 223
[24] 尹 波. 海洋平台用钢A710焊接接头的耐蚀性研究 [J]. 热加工工艺, 2018, 47(3): 223
[25] Guo H, Cheng X D, Zhang H X, et al. Corrosion behavior of welded joint of low alloy high strength steel in 3.5%NaCl solution [J]. Hot Work. Technol., 2021, 50(13): 49
[25] 郭 晗, 程旭东, 张慧霞 等. 低合金高强钢焊接接头在3.5%NaCl溶液中的腐蚀行为 [J]. 热加工工艺, 2021, 50(13): 49
[26] Ma G. Corrosion behaviour research of X70 pipeline steel welded joints for deep sea [D]. Zhengzhou: Zhengzhou University, 2017
[26] 马 歌. 深海用X70管线钢焊接接头耐蚀性研究 [D]. 郑州: 郑州大学, 2017
[27] Ma G, Zuo X R, Hong L, et al. Investigation of corrosion behavior of welded joint of X70 pipeline steel for deep sea [J]. Acta Metall. Sin., 2018, 54: 527
doi: 10.11900/0412.1961.2017.00149
[27] 马 歌, 左秀荣, 洪 良 等. 深海用X70管线钢焊接接头腐蚀行为研究 [J]. 金属学报, 2018, 54: 527
[28] Cao Z H, Liao K X, Li W, et al. Study on corrosion behavior of welded joints of X56 steel in seawater [J]. Hot Work. Technol., 2017, 46(10): 70
[28] 曹增辉, 廖柯熹, 李 伟 等. X56钢焊接接头在海水中的腐蚀行为研究 [J]. 热加工工艺, 2017, 46(10): 70
[29] Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 321
[29] 刘智勇, 万红霞, 李 禅 等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34: 321
doi: 10.11902/1005.4537.2013.156
[30] Ma R Y, Wang C G, Mu X, et al. Influence of hydrostatic pressure on corrosion behavior of ultrapure Fe [J]. Acta Metall. Sin., 2019, 55: 859
[30] 马荣耀, 王长罡, 穆 鑫 等. 静水压力对超纯Fe腐蚀行为的影响 [J]. 金属学报, 2019, 55: 859
doi: 10.11900/0412.1961.2019.00044
[31] Ma R Y, Zhao L, Wang C G, et al. Influence of hydrostatic pressure on the thermodynamics and kinetics of metal corrosion [J]. Acta Metall. Sin., 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
[31] 马荣耀, 赵 林, 王长罡 等. 静水压力对金属腐蚀热力学及动力学的影响 [J]. 金属学报, 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
[32] Li L, Qiao Y X, Zhang L M, et al. Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel [J]. Int. J. Miner. Metall. Mater., 2023, 30: 1338
[33] Na K H, Pyun S I. Effect of sulphate and molybdate ions on pitting corrosion of aluminium by using electrochemical noise analysis [J]. J. Electroanal. Chem., 2006, 596: 7
[34] Na K H, Pyun S I. Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminium in HCl-based solution [J]. Corros. Sci., 2007, 49: 2663
[35] Na K H, Pyun S I, Kim H P. Analysis of electrochemical noise obtained from pure aluminium in neutral chloride and alkaline solutions [J]. Corros. Sci., 2007, 49: 220
[36] Cottis R A, Al-Awadhi M A A, Al-Mazeedi H, et al. Measures for the detection of localized corrosion with electrochemical noise [J]. Electrochim. Acta, 2001, 46: 3665
[37] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280
[38] Al-Mazeedi H A A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta, 2004, 49: 2787
[39] Sánchez-Amaya J M, Bethencourt M, González-Rovira L, et al. Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments [J]. Electrochim. Acta, 2007, 52: 6569
[40] Zhang J. Research on crevice corrosion behaviour of 5083 and 6061 aluminum alloys [D]. Harbin: Harbin Engineering University, 2013
[40] 张 晋. 5083和6061铝合金缝隙腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013
[41] Cao F H, Zhang Z, Su J X, et al. Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique [J]. Electrochim. Acta, 2006, 51: 1359
[42] Aballe A, Bethencourt M, Botana F J, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1: 266
[43] Dong Z H, Guo X P, Zheng J S, et al. Calculation of noise resistance by use of the discrete wavelets transform [J]. Electrochem. Commun., 2001, 3: 561
[44] Moshrefi R, Mahjani M G, Jafarian M. Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification [J]. Electrochem. Commun., 2014, 48: 49
[45] Aballe A, Bethencourt M, Botana F J, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochim. Acta, 1999, 44: 4805
[46] Cai C, Zhang Z, Cao F H, et al. Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique [J]. J. Electroanal. Chem., 2005, 578: 143
[47] Homborg A M, Van Westing E P M, Tinga T, et al. Novel time–frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra [J]. Corros. Sci., 2013, 66: 97
[48] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. London, 1998, 454A: 903
[49] Shi W, Dong Z H, Guo X P. Analysis of electrochemical noise by Hilbert-Huang transform and its application [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 138
[49] 石 维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用 [J]. 中国腐蚀与防护学报, 2014, 34: 138
[1] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[2] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[3] 魏欢欢, 雷天奇, 郑东东, 辛振科. Q690高强钢对接焊缝加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
[4] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[5] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[6] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[9] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[10] 安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[11] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[12] 董赋,胡裕龙,赵欣,王智峤. 静水压力对10CrNi3MoV钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[13] 孟向楠,陈旭,吴明,赵阳,范裕文. 静水压力对X100钢在NaHCO3+NaCl溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[14] 石维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用[J]. 中国腐蚀与防护学报, 2014, 34(2): 138-146.
[15] 刘士强, 王立达, 宗秋凤, 张成, 刘贵昌. 纯Al表面局部孔蚀的电化学噪声特征分析[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.