Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 664-674     CSTR: 32134.14.1005.4537.2024.150      DOI: 10.11902/1005.4537.2024.150
  研究报告 本期目录 | 过刊浏览 |
CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用
陈丽娟1, 晁刘伟2, 赵景茂2()
1.中国石油工程建设有限公司北京设计分公司 北京 100085
2.北京化工大学材料科学与工程学院 北京 100029
Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate
CHEN Lijuan1, CHAO Liuwei2, ZHAO Jingmao2()
1.Beijing Engineering Branch, China Petroleum Engineering & Construction Co., Ltd., Beijing 100085, China
2.College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
引用本文:

陈丽娟, 晁刘伟, 赵景茂. CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
Lijuan CHEN, Liuwei CHAO, Jingmao ZHAO. Preparation of CeO2@Zr-MOF Composites and Their Effect on Corrosion Protectiveness of Epoxy Coatings on Galvanized Steel Plate[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 664-674.

全文: PDF(16061 KB)   HTML
摘要: 

以Ce(NO3)3作为铈源,通过水热合成法在Zr-MOF材料上合成了CeO2。通过扫描电子显微镜、透射电子显微镜、X射线衍射仪、傅立叶红外光谱仪、X射线光电子能谱仪及比表面积分析仪等对复合材料的微观形貌、组织结构和表面元素组成进行分析。将CeO2@Zr-MOF作为填料在不同比例下加入环氧树脂涂层中,通过电化学测试、盐雾测试、硬度测试、附着力测试和接触角测试等技术探究涂层的力学性能、疏水性、保护性能和保护机制。结果表明CeO2成功负载于Zr-MOF上,制备的CeO2@Zr-MOF形貌规整,颗粒均匀分布,粒径在200 nm左右,具有均匀且致密的孔结构,孔径主要分布在5~20 nm之间,颗粒平均比表面积为99.480 m2/g。CeO2@Zr-MOF环氧树脂涂层硬度为11HV左右,较纯环氧树脂涂层提高了111.5%左右。涂层附着力为3 MPa左右,较纯环氧树脂涂层提升了18%左右。接触角为70°左右,较纯环氧树脂涂层提升了12°~14°。电化学测试结果表明添加CeO2@Zr-MOF后的环氧树脂涂层防腐性能明显优于纯环氧树脂涂层。其中添加1%CeO2@Zr-MOF的环氧树脂涂层在浸泡60 d后低频(0.01 Hz)阻抗模值为5.49 × 1010 Ω·cm2,比纯环氧树脂涂层高出3个数量级,并且经过400 h的盐雾实验后涂层划痕处几乎没有腐蚀痕迹,表现出对锌镁铝镀层钢板良好的腐蚀防护性能。

关键词 Zr-MOFCeO2有机涂层镀锌钢板腐蚀与防护    
Abstract

In this study, CeO2 was synthesized on zirconium metal oxide skeleton (Zr-MOF) material by hydrothermal synthesis with Ce(NO3)3 as cerium source, ammonia as precipitant, and ethylene glycol as dispersant. The micro-morphology, structureand chemical composition of the composites were characterized by means of scanning electron microscope, transmission electron microscope, X-ray diffractometer, FTIR spectroscopy, X-ray photoelectron spectroscopy, and specific surface area analyzer. Then, as a filler, different amount of CeO2@Zr-MOF was mixed with epoxy resin to prepare variouse CeO2@Zr-MOF-epoxy rein coatings on galvanized steel plate. Afterwards, the effect of CeO2@Zr-MOF on the protectiveness, mechanical properties and hydrophobicityof the CeO2@Zr-MOF coatings were investigated via electrochemical test, salt spray test, hardness test, adhesion test, and contact angle test etc. The results show that CeO2 particles were successfully deposited on the surface of Zr-MOF, while the prepared CeO2@Zr-MOF has a regular morphology with CeO2 particles of mean diameter 200 nm uniformly distributed on the surface, which presents a uniform and dense porous structure with pore size ranging 5-20 nm, and average specific surface area of 99.48 m2/g; The hardness of the epoxy resin coating with CeO2@Zr-MOF is about 11HV, which is about 111% higher than that of pure epoxy resin coating. The adhesion of the coating is about 3 MPa, which is about 18% higher than that of the pure epoxy resin coating, and the contact angle is about 70º for water, which is 12°-14° higher than that of the pure epoxy resin coating; The anticorrosive performance of CeO2@Zr-MOF epoxy resin coating is significantly better than that of pure epoxy resin coating. Among them, the impedance modulus value of the epoxy resin coating with 1%CeO2@Zr-MOF is 5.49 × 1010 Ω·cm2 at frequency 0.01 Hz after 60 d of immersion in 3.5% NaCl solution, which is three orders of magnitude higher than that of the pure epoxy resin coating. Furthermore after 400 h of salt spray test, the coating is almost no signs of corrosion, showing better protectiveness for galvanized steel plate

Key wordsZr-MOF    CeO2    organic coating    ZMA coated steel    corrosion and protection
收稿日期: 2024-05-14      32134.14.1005.4537.2024.150
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(52371046)
通讯作者: 赵景茂,E-mail:jingmaozhao@126.com,研究方向为材料腐蚀与防护
Corresponding author: ZHAO Jingmao, E-mail: jingmaozhao@126.com
作者简介: 陈丽娟,女,1983年生,高级工程师
图1  Zr-MOF的制备流程示意图
图2  CeO2@Zr-MOF的制备流程示意图
图3  CeO2@Zr-MOF不同放大倍数时的SEM图像
图4  CeO2@Zr-MOF不同放大倍数时的TEM图及TEM-EDS结果
图5  CeO2@Zr-MOF的XRD图谱
图6  MOF 和CeO2@Zr-MOF的FTIR图谱
图7  CeO2@Zr-MOF材料的XPS总谱图及Zr 3d和Ce 3d高分辨率XPS谱图
图8  CeO2@Zr-MOF的氮气吸附脱附曲线
图9  Zr-MOF的化学结构式[18]
图10  加入不同比例CeO2@Zr-MOF后环氧树脂涂层的硬度
图11  不同比例CeO2@Zr-MOF环氧涂层在基材上的附着力
图12  不同比例CeO2@Zr-MOF环氧涂层的水接触角测试结果
图13  不同添加量CeO2@Zr-MOF环氧涂层的EIS测试结果
图14  CeO2@Zr-MOF环氧涂层的等效电路图
SamplesTime / dCPEcRc / Ω·cm2Cc / F·cm2CPEdlRct / Ω·cm2Cc / F·cm2
Y1 / Ω-1·cm-2·s nn1Y2 / Ω-1·cm-2·s nn2
EP07.00 × 10-1114.24 × 1087.00 × 10-111.34 × 10-1017.59 × 1091.34 × 10-10
128.99 × 10-110.974.11 × 1088.12 × 10-111.44 × 10-100.848.05 × 1091.48 × 10-10
246.54 × 10-110.984.61 × 1086.09 × 10-118.37 × 10-110.798.18 × 1088.36 × 10-11
367.08 × 10-1118.91 × 1077.08 × 10-111.73 × 10-1013.30 × 1081.73 × 10-10
489.71 × 10-110.953.35 × 1077.38 × 10-112.45 × 10-70.788.14 × 1073.30 × 10-7
607.83 × 10-110.963.16 × 1076.49 × 10-111.60 × 10-80.331.40 × 1073.63 × 10-8
0.5%CeO2@Zr-MOF06.03 × 10-1111.94 × 1096.03 × 10-113.89 × 10-100.773.03 × 10105.44 × 10-11
126.69 × 10-110.972.57 × 1096.34 × 10-111.13 × 10-100.768.00 × 10101.11 × 10-10
246.66 × 10-110.973.86 × 1096.24 × 10-113.92 × 10-100.539.06 × 10102.45 × 10-10
366.52 × 10-110.984.60 × 1096.31 × 10-113.16 × 10-110.741.68 × 10113.63 × 10-11
484.87 × 10-1112.60 × 1094.87 × 10-114.27 × 10-110.741.60 × 10115.47 × 10-11
604.69 × 10-110.983.21 × 1094.72 × 10-113.31 × 10-1113.94 × 10103.31 × 10-11
1%CeO2@Zr-MOF05.70 × 10-1114.49 × 1095.70 × 10-111.47 × 10-1112.93 × 10101.47 × 10-11
127.00 × 10-1116.73 × 1097.00 × 10-117.61 × 10-1118.90 × 10107.61 × 10-11
245.01 × 10-110.997.69 × 1094.98 × 10-111.18 × 10-100.709.85 × 10101.19 × 10-10
366.44 × 10-110.976.27 × 1096.07 × 10-112.47 × 10-110.631.43 × 10113.74 × 10-11
485.84 × 10-1112.39 × 1095.84 × 10-113.58 × 10-110.721.34 × 10114.99 × 10-11
606.20 × 10-110.986.11 × 1095.98 × 10-112.70 × 10-110.681.11 × 10113.86 × 10-11
2%CeO2@Zr-MOF06.68 × 10-110.974.34 × 1096.69 × 10-112.54 × 10-110.966.34 × 10102.58 × 10-11
126.80 × 10-110.975.74 × 1096.70 × 10-112.46 × 10-110.648.27 × 10101.10 × 10-11
244.90 × 10-110.986.15 × 1094.75 × 10-111.03 × 10-110.851.04 × 10111.10 × 10-11
366.75 × 10-110.971.72 × 1096.38 × 10-114.79 × 10-110.672.11 × 10104.83 × 10-11
484.68 × 10-1114.54 × 1094.68 × 10-111.81 × 10-1111.52 × 10101.81 × 10-11
609.64 × 10-110.984.74 × 1099.52 × 10-113.85 × 10-110.801.87 × 10103.62 × 10-11
表1  3.5%NaCl溶液中浸泡不同时间纯EP涂层以及不同添加量的CeO2@Zr-MOF/EP涂层在ZMA镀层钢板上的EIS拟合参数
图15  不同添加量CeO2@Zr-MOF环氧涂层在不同浸泡时间下的Rc和Rct值
图16  400 h后不同比例CeO2@Zr-MOF划伤涂层的盐雾实验结果
图17  CeO2@Zr-MOF涂层的腐蚀防护机制示意图
[1] Long W J, Tang J, Luo Q L, et al. Corrosion inhibition performance of biomass-derived carbon dots on Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 807
[1] 龙武剑, 唐 杰, 罗启灵 等. 生物质碳点对Q235钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 807
doi: 10.11902/1005.4537.2023.233
[2] Hu Y F, Cao X K, Ma X Z, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 460
[2] 胡云飞, 曹祥康, 马小泽 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化 [J]. 中国腐蚀与防护学报, 2023, 43: 460
doi: 10.11902/1005.4537.2022.202
[3] Chen Y N, Wu L, Yao W H, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130: 12
doi: 10.1016/j.jmst.2022.03.039
[4] Dao X L, Nie M, Sun H, et al. Electrochemical performance of metal-organic framework MOF(Ni) doped graphene [J]. Int. J. Hydrog. Energ., 2022, 47: 16741
[5] Yu F, Wang X, Zhang Z. Research progress of nanofillers for epoxy anti-corrosion coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 220
[5] 于 芳, 王 翔, 张 昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 220
[6] Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers [J]. Angew. Chem.-Int. Edit., 2004, 43: 2334
[7] Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature, 1995, 378: 703
[8] Zhang Z C, Chen Y F, He S, et al. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions [J]. Angew. Chem., 2014, 126: 12725
[9] Panella B, Hirscher M, Pütter H, et al. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared [J]. Adv. Funct. Mater., 2006, 16: 520
[10] Chen H D, Yu Z X, Cao K Y, et al. Preparation of a BTA-UIO-GO nanocomposite to endow coating systems with active inhibition and passive anticorrosion performances [J]. New J. Chem., 2021, 45: 16069
[11] Chen S R, Chen W G, Qian Y, et al. Preparation and perfromance of rare earth cerium modified graphene oxide/waterborne epoxy resin composite coating [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 107
[11] 陈施润, 陈文革, 钱 颖 等. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究 [J]. 中国腐蚀与防护学报, 2024, 44: 107
[12] Xuan X Y, Qu S P, Zhao X Y. Preparation and performance of CeO2@MWCNTs/EP composite coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 992
[12] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 992
doi: 10.11902/1005.4537.2022.307
[13] Cai G Y, Wang H W, Zhao W H, et al. Effect of Nano-CeO2 on anticorrosion performance for polyurethane coating [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 411
[13] 蔡光义, 王浩伟, 赵苇杭 等. 添加纳米CeO2对聚氨酯涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 411
doi: 10.11902/1005.4537.2016.147
[14] Wang T Y, Zhao C, Meng L H, et al. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: a novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination [J]. Chem. Eng. J., 2023, 451: 138624
[15] Wu Y M, Wu Y H, Sun Y X, et al. 2D nanomaterials reinforced organic coatings for marine corrosion protection: state of the art, challenges, and future prospectives [J]. Adv. Mater., 2024, 18: e2312460
[16] Li Y H, Yi X H, Li Y X, et al. Robust Cr(VI) reduction over hydroxyl modified UiO-66 photocatalyst constructed from mixed ligands: performances and mechanism insight with or without tartaric acid [J]. Environ. Res., 2021, 201: 111596
[17] Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G, et al. Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF) [J]. Chem. Eng. J., 2021, 408: 127361
[18] Bai Y, Dou Y B, Xie L H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications [J]. Chem. Soc. Rev., 2016, 45: 2327
doi: 10.1039/c5cs00837a pmid: 26886869
[19] Wang J B, Zhao J M, Tabish M, et al. Intelligent anticorrosion coating based on mesostructured BTA@mCeO2/g-C3N4 nanocomposites for inhibiting the filiform corrosion of Zn-Mg-Al coated steel [J]. Corros. Sci., 2023, 221: 111331
[20] Kordas G. Nanocontainers (CeO2): synthesis, characterization, properties, and anti-corrosive application [A]. HussainCM, VermaC. Sustainable Corrosion Inhibitors II: Synthesis, Design, and Practical Applications [M]. Washington: American Chemical Society, 2021, 27: 177
[21] Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
[22] Ramezanzadeh M, Ramezanzadeh B, Mahdavian M, et al. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings [J]. Carbon, 2020, 161: 231
[23] He H M, Sun Q, Gao W Y, et al. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation [J]. Angew. Chem., 2018, 130: 4747
[24] Bůžek D, Demel J, Lang K. Zirconium metal-organic framework UiO-66: stability in an aqueous environment and its relevance for organophosphate degradation [J]. Inorg. Chem., 2018, 57: 14290
doi: 10.1021/acs.inorgchem.8b02360 pmid: 30371080
[1] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[2] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[3] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[4] 陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
[5] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[6] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[7] 王伟杰, 汉继程, 毛阳, 官自超, 狄志刚, 缪磊, 马胜军. 保温层下腐蚀监检测技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 22-28.
[8] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[9] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[11] 王正泉,李言涛,徐玮辰,杨黎晖,孙丛涛. 全球腐蚀与防护领域研究现状与发展趋势分析:基于文献计量学和信息可视化分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 201-214.
[12] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[15] 苏景新 白 云 关庆丰 邹 阳. 飞机蒙皮结构表面涂层失效的电化学阻抗分析[J]. 中国腐蚀与防护学报, 2013, 33(3): 251-256.