Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1029-1037     CSTR: 32134.14.1005.4537.2023.271      DOI: 10.11902/1005.4537.2023.271
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究
翁硕1,2,3(), 孟超1, 朱江峰4, 王艾1, 常馨1, 康妘1, 何小田1, 赵礼辉1,2,3
1.上海理工大学机械工程学院 上海 200093
2.机械工业汽车机械零部件强度与可靠性评价重点实验室 上海 200093
3.上海市新能源汽车可靠性评价公共技术平台 上海 200093
4.苏州苏试试验集团有限公司 苏州 215129
Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy
WENG Shuo1,2,3(), MENG Chao1, ZHU Jiangfeng4, WANG Ai1, CHANG Xin1, KANG Yun1, HE Xiaotian1, ZHAO Lihui1,2,3
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China
3. Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China
4. Suzhou Sushi Testing Group Co., Ltd., Suzhou 215129, China
引用本文:

翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
Shuo WENG, Chao MENG, Jiangfeng ZHU, Ai WANG, Xin CHANG, Yun KANG, Xiaotian HE, Lihui ZHAO. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1029-1037.

全文: PDF(6705 KB)   HTML
摘要: 

通过AA7075-T651铝合金中断疲劳实验、含疲劳损伤试样的拉伸实验、电化学实验及微观结构观察等系统地探究了应力控制模式下疲劳损伤对其力学性能及腐蚀行为的影响。实验结果表明:应力控制模式下的疲劳损伤不仅可以提升AA7075铝合金的综合力学性能,还可以增加其耐腐蚀性,而疲劳损伤前后的微观结构变化(位错密度增加及二次相析出)是影响AA7075铝合金力学性能及腐蚀行为变化的根本原因。

关键词 应力控制模式疲劳损伤腐蚀行为AA7075-T651铝合金    
Abstract

The effect of fatigue damage under stress-controlled mode on mechanical properties and corrosion behavior of AA7075-T651 Al-alloy was systematically investigated through the interrupted fatigue test, tensile test, electrochemical measurement and microstructure observation. The results show that the acquired fatigue damages can not only improve the comprehensive mechanical properties of AA7075 Al-alloy, but also increase its corrosion resistance. It follows that the change of microstructure (the increase of dislocation density and secondary phase precipitation) before and after being experienced fatigue damages is the fundamental reason that affects the mechanical properties and corrosion behavior of AA7075 Al-alloy.

Key wordsstress-controlled mode    fatigue damage    corrosive behavior    AA7075-T651Al-alloy
收稿日期: 2023-09-01      32134.14.1005.4537.2023.271
ZTFLH:  TG156  
基金资助:国家自然科学基金(52005336)
通讯作者: 翁硕,E-mail:wengshuo@usst.edu.cn,研究方向为结构与材料可靠性评价及设计
Corresponding author: WENG Shuo,E-mail:wengshuo@usst.edu.cn
作者简介: 翁 硕,男,1988年生,博士,副教授
图1  7075-T651铝合金试样尺寸示意图
图2  AA7075-T651铝合金应力比为-0.1下试样的S-N曲线
图3  含不同给定循环周次的疲劳损伤试样的拉伸曲线
图4  含不同给定循环周次的疲劳损伤试样的力学性能变化
图5  含不同给定循环周次的疲劳损伤试样的OCP
SampleOCP/V
FrontSide
As-received sample-0.777-0.777
Pre-fatigued 1/10Nf sample-0.772-0.773
Pre-fatigued 1/4Nf sample-0.774-0.771
Pre-fatigued 1/2Nf sample-0.771-0.765
表1  含不同给定循环周次的疲劳损伤试样在400~1800 s的平均OCP
图6  含不同给定循环周次的疲劳损伤试样的Nyquist和Bode图
SampleRct / Ω·cm2Rs / Ω·cm2
FrontSideFrontSide
As-received sample326030956.965.18
Pre-fatigued 1/10Nf sample390132187.314.68
Pre-fatigued 1/4Nf sample460236857.464.71
Pre-fatigued 1/2Nf sample567142017.264.90
表2  含不同给定循环周次的疲劳损伤试样拟合电路的相关参数
图7  含不同给定循环周次的疲劳损伤试样的极化曲线图
图8  含不同给定循环周次的疲劳损伤试样的腐蚀电位和腐蚀电流密度图
图9  AA7075-T651铝合金原始试样和疲劳损伤为1/4Nf试样的正面与侧面金相组织
图10  原始试样和预疲劳1/4Nf试样的位错密度形貌
[1] Chen W B, Niu R Z, Pan X, et al. Applicaion of aluminum alloy in automobile lightweight and examples of heavy truck lightweight [J]. Automob. Appl. Technol., 2020, 45(16): 49
[1] 陈文博, 牛润泽, 潘星 等. 铝合金在汽车轻量化中的应用及重卡轻量化实例 [J]. 汽车实用技术, 2020, 45(16): 49
[2] Zhou X, Zhang Z T, Gao Y, et al. Experimental study on fatigue damage of aluminum alloy stamping parts [J]. J. Mech. Eng., 2023, 59(10): 117
doi: 10.3901/JME.2023.10.117
[2] 周 迅, 张振涛, 高 云 等. 铝合金冲压件疲劳损伤规律的试验研究 [J]. 机械工程学报, 2023, 59(10): 117
[3] Chen Y Q, Zhang H, Zhang W T, et al. Research progress on influence of service environment on fatigue damage behavior of high strength aluminum alloy [J]. Mater. Mech. Eng., 2020, 44(1): 1
doi: 10.11973/jxgccl202001001
[3] 陈宇强, 张 浩, 张文涛 等. 服役环境对高强铝合金疲劳损伤行为影响的研究进展 [J]. 机械工程材料, 2020, 44(1): 1
doi: 10.11973/jxgccl202001001
[4] Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
[4] 翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486
[5] Zhang S, Zhang T, He Y T, et al. Effect of coastal atmospheric corrosion on fatigue properties of 2024-T4 aluminum alloy structures [J]. J. Alloy. Compd., 2019, 802: 511
[6] Calderon-Uriszar-Aldaca I, Briz E, Biezma M V, et al. A plain linear rule for fatigue analysis under natural loading considering the coupled fatigue and corrosion effect [J]. Int. J. Fatigue, 2019, 122: 141
[7] Pao P S, Gill S J, Feng C R. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy [J]. Scr. Mater., 2000, 43: 391
[8] Zhou H L. An investigation of corrosion fatigue performance of aluminum riser materials in simulated seawater [D]. Changchun: Jilin University, 2018
[8] 周海龙. 海洋钻井铝合金隔水管材料在模拟海水中的腐蚀疲劳性能研究 [D]. 长春: 吉林大学, 2018
[9] Zhang Y H, Lü G Z, Chen Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test [J]. Acta Aeronaut. Astronaut. Sin., 2005, 26: 779
[9] 张有宏, 吕国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究 [J]. 航空学报, 2005, 26: 779
[10] Chen J, Diao B, He J J, et al. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion [J]. Int. J. Fatigue, 2018, 110: 153
[11] Co N E C, Burns J T. Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue behavior [J]. Int. J. Fatigue, 2017, 103: 234
[12] Zerbst U, Madia M, Klinger C, et al. Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions [J]. Eng. Failure Anal., 2019, 98: 228
[13] Rodriguez R I, Jordon J B, Allison P G, et al. Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys [J]. Mater. Sci. Eng., 2019, 742A: 255
[14] Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086 pmid: 30819960
[15] Huang J N, Wang X. Effect of tensile stress on corrosion behavior of 7050 aluminum alloy [J]. Ordnance Mater. Sci. Eng., 2020, 43(6): 69
[15] 黄建娜, 王 璇. 拉应力对7050铝合金腐蚀行为的影响 [J]. 兵器材料科学与工程, 2020, 43(6): 69
[16] Li N, Dong C F, Man C, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy [J]. Corros. Sci., 2021, 180: 109174
[17] Weng S, Huang Y H, Si X F, et al. SCC fracture location shifting affected by stress-controlled fatigue damage of NiCrMoV steel welded joints [J]. J. Mater. Res. Technol., 2022, 21: 1534
[18] Huang Y H, Si X F, Weng S, et al. Effect of fatigue damage on stress corrosion cracking sensitivity of nuclear steam turbine welded joint [J]. Trans. China Weld. Inst., 2020, 41(4): 12
[18] 黄毓晖, 司晓法, 翁 硕 等. 疲劳损伤对核电汽轮机焊接转子接头应力腐蚀开裂敏感性的影响 [J]. 焊接学报, 2020, 41(4): 12
[19] Weng S, Huang Y H, Xuan F Z, et al. Enhanced galvanic corrosion phenomenon in the welded joint of NiCrMoV steel by low-cycle fatigue behavior [J]. J. Electrochem. Soc., 2019, 166: C270
doi: 10.1149/2.0411912jes
[20] Weng S, Huang Y H, Zhu M L, et al. Microstructural evolution along the NiCrMoV steel welded joints induced by low-cycle fatigue damage [J]. Metals, 2021, 11: 811
[21] Chen X L, Mørtsell E A, Sunde J K, et al. Enhanced mechanical properties in 6082 aluminum alloy processed by cyclic deformation [J]. Metals, 2021, 11: 1735
[1] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[2] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[3] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[4] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[5] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[6] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[7] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[8] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[9] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[10] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[11] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[12] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[13] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[14] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[15] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.