Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1038-1046     CSTR: 32134.14.1005.4537.2023.292      DOI: 10.11902/1005.4537.2023.292
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究
彭文山1, 邢少华1(), 钱峣1,2, 蔺存国1, 侯健1, 张大磊3
1.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
2.青岛市即墨区工业和信息化局 青岛 266205
3.中国石油大学(华东)材料科学与工程学院 青岛 266580
Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes
PENG Wenshan1, XING Shaohua1(), QIAN Yao1,2, LIN Cunguo1, HOU Jian1, ZHANG Dalei3
1. National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2. Qingdao Jimo District Bureau of industry and information technology, Qingdao 266205, China
3. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
引用本文:

彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
Wenshan PENG, Shaohua XING, Yao QIAN, Cunguo LIN, Jian HOU, Dalei ZHANG. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1038-1046.

全文: PDF(7712 KB)   HTML
摘要: 

TA2纯钛是新一代船舶海水管路材料,在海水冲刷下管路钝化膜失效会导致管路耐久性下降。研究海水冲刷对不同表面处理TA2纯钛腐蚀行为的影响对于评估TA2纯钛腐蚀和防护具有重要意义。采用动电位极化、电化学阻抗和Mott-Schottky分析等电化学测试方法研究了两种表面处理TA2纯钛在流动海水中的耐冲刷腐蚀性能,并对腐蚀后的试样进行腐蚀形貌观察和腐蚀产物分析。结果表明,5 m/s以内,海水流速的变化对TA2纯钛表面钝化膜的耐蚀性影响较小。电位升高时,在流动海水中钛合金表面钝化膜出现短暂的溶解现象,但很快就会进行再钝化修复,对材料的耐蚀性并未产生明显影响。相比于表面钝化处理试样,抛光状态试样在流动海水冲刷下阴极极化存在极限扩散特征,这主要是由于钝化状态试样表面已经形成了钝化膜,其对氧的消耗少于尚未形成钝化膜的表面抛光试样。抛光试样由氧传质速度控制的去极化发展慢,出现不随电位变化的极限电流密度。两种表面处理后的TA2纯钛钝化膜在海水中均只呈现n型半导体特征,且极化测试后材料表面平整,未出现明显局部腐蚀。

关键词 TA2纯钛海水管路冲刷腐蚀电化学钝化膜    
Abstract

TA2 pure-Ti is a new generation of marine pipeline material, and the flowing seawater induced failure of its passivation film can deteriorate the durability of TA2 pure-Ti pipes. Hence the effect of flowing seawater on the corrosion behavior of TA2 pure-Ti being subjected to different surface treatments is of great significance for evaluating the service performance of TA2 pure-Ti pipes. Herein, the corrosion behavior of two surface treated TA2 pure-Ti rings in flowing seawater was comparatively studied in a home-made seawater pipeline integrated simulation set by means of measurements such as dynamic potential polarization, electrochemical impedance, and Mott Schottky analysis, as well as characterization of corrosion morphology and corrosion products. The results showed when the seawater flow rate below 5 m/s, the change in seawater flow rate had a relatively small impact on the corrosion resistance of the passive film on the surface of TA2 pure-Ti. When the potential rises, the passive film on the surface of TA2 showed a transient dissolution in flowing seawater, but it would soon be re-passivated, which did not have a significant impact on the corrosion resistance of the substrate material. Compared to the surface passivation treated ones, the polished TA2 exhibit limited diffusion characteristics of cathodic polarization in flowing seawater. This is mainly due to the presence of a passivation film on the surface of the passivated TA2, which consumes less oxygen than the surface polished ones that have not yet formed a passivation film. The depolarization of the polished TA2, which was controlled by oxygen mass transfer rate develops slowly, resulting in a limit current density that does not vary with the potential. The passivation films on the TA2, after being subjected to two surface treatments only exhibit n-type semiconductor characteristics in seawater, and after polarization testing, the material surface is flat without significant local corrosion.

Key wordsTA2 pure-Ti    seawater pipeline    erosion-corrosion    electrochemistry    passivation film
收稿日期: 2023-09-14      32134.14.1005.4537.2023.292
ZTFLH:  TG172  
通讯作者: 邢少华,E-mail: xingsh@sunrui.net,研究方向为金属材料腐蚀与防护
Corresponding author: XING Shaohua, E-mail: xingsh@sunrui.net
作者简介: 彭文山,男,1987年生,博士,高级工程师
图1  电化学测试用电解池
图2  TA2纯钛在不同流速冲刷1 h后的动电位极化曲线
图3  不同流速下表面抛光TA2的电化学阻抗谱
图4  海水冲刷后试样的拟合电路图
V / m·s-1nRf / Ω·cm2
00.941.39 × 107
10.941.19 × 107
20.931.17 × 107
30.941.20 × 107
40.941.21 × 107
50.941.19 × 107
表1  流动海水下表面抛光TA2纯钛的电化学阻抗谱拟合数据
图5  不同流速下表面钝化TA2的电化学阻抗谱
V / m·s-1nRf / Ω·cm2
00.961.81 × 107
10.951.61 × 107
20.971.84 × 107
30.981.74 × 107
40.971.93 × 107
50.971.78 × 107
表2  流动海水下表面钝化TA2电化学阻抗谱拟合数据
图6  不同流速下TA2的Mott-Schottky曲线
图7  不同流速下TA2试样的施主密度和平带电位
图8  抛光TA2在不同流速下的三维形貌
图9  钝化TA2在不同流速下的三维形貌
图10  抛光TA2在不同流速下的SEM形貌
图11  钝化TA2在不同流速下的SEM形貌
[1] Song D J, Niu L, Yang S L. Research on application technology of titanium alloy in marine pipeline [J]. Rare Metal Mater. Eng., 2020, 49: 1100
[1] 宋德军, 牛 龙, 杨胜利. 船舶海水管路钛合金应用技术研究 [J]. 稀有金属材料与工程, 2020, 49: 1100
[2] Wu X W, Nie L X, Wu H. Erosion corrosion behavior of several typical pipeline materials in flowing seawater [J]. Mater. Prot., 2021, 54(5): 7, 23
[2] 武兴伟, 聂垒鑫, 吴 恒. 几种典型管路材料在流动海水中的冲刷腐蚀行为 [J]. 材料保护, 2021, 54(5): 7, 23
[3] Wei B M. Theory and Application of Metal Corrosion [M]. Beijing: Chemical Industry Press, 2008
[3] 魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 2008
[4] Xia L T, Huang G Q, Zhang S P, et al. Marine Corrosion and Protection of Metal Materials [M]. Beijing: Metallurgical Industry Press, 2003
[4] 夏兰廷, 黄桂桥, 张三平 等. 金属材料的海洋腐蚀与防护 [M]. 北京: 冶金工业出版社, 2003
[5] Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16, 23
[5] 周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16, 23
[6] Zhang M L. Corrosion cause and anti-corrosion measure of marine sea water piping in warship [J]. Total Corros. Control, 2010, 24(6): 5
[6] 张敏丽. 船舶海水管系腐蚀的原因及其防护 [J]. 全面腐蚀控制, 2010, 24(6): 5
[7] Wang G F, Jia Z Q, Dong C C, et al. Properties of typical materials for marine seawater pipeline system [J]. Corros. Prot., 2022, 43(4): 24
[7] 王广夫, 贾智棋, 董彩常 等. 舰船海水管路体系典型材料的性能 [J]. 腐蚀与防护, 2022, 43(4): 24
[8] Zeng R H, Peng Y H, Zhang W. Protection measures against erosion of seawater pipeline of ships [J]. Chin. J. Ship Res., 2009, 4(3): 74, 80
[8] 曾荣辉, 彭玉辉, 张 威. 船舶海水管路防腐蚀研究 [J]. 中国舰船研究, 2009, 4(3): 74, 80
[9] Zhang Y F, Li J Z, Zhang W H. Eletrochemical behavior and corrosion properties of Ti-6Al-4V Alloy made by selective laser melting for immersion in artificial seawater at different temperature [A]. Characterization of Minerals, Metals, and Materials 2018 [C]. Cham: Springer, 2018
[10] Zhang Y X, Yan T T, Fan L, et al. Effect of pH on the corrosion and repassivation behavior of TA2 in simulated seawater [J]. Materials (Basel), 2021, 14: 6764
[11] Qian J, Wang Y, Li Y. The application of titanium and titanium alloys on foreign vessls [J]. Ship Sci. Technol., 2016, 38(6): 1, 19
[11] 钱 江, 王 怡, 李 瑶. 钛及钛合金在国外舰船上的应用 [J]. 舰船科学技术, 2016, 38(6): 1, 19
[12] Qu H L, Zhou Y G, Zhou L, et al. Recent progress of study on new titanium alloys [J]. Mater. Rep., 2005, 19(2): 94
[12] 曲恒磊, 周义刚, 周 廉 等. 近几年新型钛合金的研究进展 [J]. 材料导报, 2005, 19(2): 94
[13] Zhao Y Q, Wei J F, Gao Z J, et al. Titanium alloys: Current status of application and low cost manufacturing technologies [J]. Mater. Rep., 2003, 17(4): 5
[13] 赵永庆, 魏建峰, 高占军 等. 钛合金的应用和低成本制造技术 [J]. 材料导报, 2003, 17(4): 5
[14] Huang X X, Li R Q, Zhang Y X. Corrosion control and prevention technique for fasteners made of titanium alloys [J]. Mater. Prot., 2008, 41(6): 56
[14] 黄晓霞, 李荣强, 张艳霞. 钛合金紧固件的腐蚀及其防护技术 [J]. 材料保护, 2008, 41(6): 56
[15] Qian J, Zhao M, Jiang Y. Applicaion influence and key technology problems of titanium seawater pipelines used on navy ships [J]. Ship Sci. Technol., 2019, 41(5): 55
[15] 钱 江, 赵 满, 姜 祎. 钛合金海水管路上舰应用影响与关键技术问题 [J]. 舰船科学技术, 2019, 41(5): 55
[16] Zhao Y Y. Low cost technology and application of titanium for marine seawater pipeline in the USA [J]. Dev. Appl. Mater., 2022, 37(3): 93
[16] 赵彦营. 美国船舶海水管路用钛的低成本技术及应用概况 [J]. 材料开发与应用, 2022, 37(3): 93
[17] Hai M N, Huang F, Wang Y M. Brief analysis of the application of titanium and titanium alloy in marine equipment [J]. Metal World, 2021, (5): 16
[17] 海敏娜, 黄 帆, 王永梅. 浅析钛及钛合金在海洋装备上的应用 [J]. 金属世界, 2021, (5): 16
[18] Wu J X. Application of titanium alloy materials in ship materials [J]. Marine Equip./Mater. Market., 2020, (8): 5
[18] 吴建新. 钛合金材料在船舶材料上的应用 [J]. 船舶物资与市场, 2020, (8): 5
[19] Yang W G, Dong C C, Qi Y F, et al. Corrosion characteristics of titanium alloy seawater pipeline system materials [J]. Equip. Environ. Eng., 2019, 16(11): 36
[19] 杨万国, 董彩常, 亓云飞 等. 钛合金海水管路系统材料腐蚀特性研究 [J]. 装备环境工程, 2019, 16(11): 36
[20] Yan S K, Zheng D J, Wei J, et al. Electrochemical activation of passivated pure titanium in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 123
[20] 严少坤, 郑大江, 韦 江 等. 钝性纯Ti在人工海水中的电化学活化行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 123
doi: 10.11902/1005.4537.2018.050
[21] Luo X B, Qian J, Su H, et al. Effect of flow velocity on corrosion behavior of typical metal materials for pipes in seawater [J]. Corros. Prot., 2015, 36: 555
[21] 罗小兵, 钱 江, 苏 航 等. 海水流速对典型金属管材腐蚀行为的影响 [J]. 腐蚀与防护, 2015, 36: 555
[22] Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy [J]. Chin. J. Lasers, 2020, 47: 0102003
[22] 廖聪豪, 周 静, 沈 洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能 [J]. 中国激光, 2020, 47: 0102003
[23] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
[24] Morrison S R, translated by Wu H H. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. Beijing: Science Press, 1988
[24] Morrison S R著, 吴辉煌, 译. 半导体与金属氧化膜的电化学 [M]. 北京: 科学出版社, 1988
[1] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[2] 马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[3] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[4] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[5] 戴威, 刘园园, 涂闻芮, 孙阳庭, 李劲, 蒋益明. 外加电位下Ag/Sn电偶的腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[6] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[7] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[8] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[9] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[10] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[11] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[12] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[13] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[14] 龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[15] 李文杰, 车晓钰, 唐永存, 刘光明, 田文明, 何华林, 刘晨辉. 塑性变形加工对纯锌在天津土壤浸出液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.