Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 1064-1072     CSTR: 32134.14.1005.4537.2023.284      DOI: 10.11902/1005.4537.2023.284
  轻质合金腐蚀与防护专栏 本期目录 | 过刊浏览 |
电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响
田梦真1, 王勇2, 李涛3, 汪川2, 郭泉忠2(), 郭建喜4()
1.辽宁大学化学院 沈阳 110036
2.中国科学院金属研究所 沈阳 110016
3.滨州魏桥国科高等技术研究院 山东省先进铝基材料与技术重点实验室 滨州 256600
4.海军勤务学院 天津 300450
Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy
TIAN Mengzhen1, WANG Yong2, LI Tao3, WANG Chuan2, GUO Quanzhong2(), GUO Jianxi4()
1. College of Chemistry, Liaoning University, Shenyang 110036, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Shandong Key Laboratory of Advanced Aluminium Materials and Technology, Binzhou Institute of Technology, Binzhou 256600, China
4. Naval Service Academy, Tianjin 300450, China
引用本文:

田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
Mengzhen TIAN, Yong WANG, Tao LI, Chuan WANG, Quanzhong GUO, Jianxi GUO. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1064-1072.

全文: PDF(9984 KB)   HTML
摘要: 

微弧氧化可提高镁合金表面的耐腐蚀性,但微弧氧化存在能耗高的不足,限制其在镁合金部件上的大规模应用。为降低微弧氧化的能耗,采用脉冲微弧氧化电源在AZ31B镁合金表面制备微弧氧化膜层,通过盐雾实验、电化学测试、扫描电镜等表征手段,研究恒流模式下电参数(频率、占空比、电流密度)对膜层单位能耗和耐蚀性能的影响。结果表明,频率对膜层单位能耗影响较小,但频率越高,膜层耐蚀性能越好;占空比对能耗的影响比较明显,随占空比的升高,膜层单位能耗减小,但耐蚀性能降低;电流密度也显著影响能耗,电流密度越大,膜层单位能耗越大,但电流密度变化对膜层的耐蚀性能影响较小。

关键词 微弧氧化镁合金能耗耐蚀性    
Abstract

Micro-arc oxidation (MAO) can improve the corrosion resistance of Mg-alloys, but it has the deficiency of high energy consumption, which restricts its large-scale application on Mg-alloy components. In order to reduce the energy consumption of micro-arc oxidation, micro-arc oxidation coatings were prepared on the surface of AZ31B Mg-alloy in an electrolyte of Na2SiO3 20 g/L, NaOH 2 g/L and NaF 2 g/L by pulsed power supply, and the effects of electrical parameters (frequency, duty cycle and current density) on the unit energy consumption and corrosion resistance of the coatings were studied by means of scanning electron microscopy, electrochemical testing and salt spray test. The results show that the frequency has less effect on the unit energy consumption of the coatings, but the higher the frequency, the better the corrosion resistance of the coatings; the duty cycle has more obvious effect on the energy consumption, with the increase of the duty cycle, the unit energy consumption of the coatings decreases, but the corrosion resistance decreases; the current density also has a significant influence on the energy consumption, the higher the current density, the higher the unit energy consumption of the coatings, but the change of current density has less effect on the corrosion resistance of the coatings.

Key wordsMicro-arc oxidation    Mg-alloy    energy consumption    corrosion resistance
收稿日期: 2023-09-11      32134.14.1005.4537.2023.284
ZTFLH:  TG174.4  
基金资助:魏桥国科高研院-中科院金属研究所研发项目(GYY-JSBU-2022-006)
通讯作者: 郭泉忠,E-mail: qzguo@imr.ac.cn,研究方向为腐蚀科学与防护、电化学制造;
郭建喜,E-mail:1419863531@qq.com,研究方向为海军舰务
Corresponding author: GUO Quanzhong, E-mail: qzguo@imr.ac.cn;
作者简介: 田梦真,女,1998年生,硕士生
图1  不同频率时微弧氧化过程的U-t和I-t曲线

Frequency

Hz

Termination

voltage

V

Current density

A·dm-2

Oxidation

time

min

Thickness

μm

Area

cm2

Energy consumption

kW·h / (m2·μm)

1004031139501.26
5004001149501.29
10004001159501.39
表1  不同频率下制备的微弧氧化膜层的能耗
图2  不同频率下制备的微弧氧化膜层的微观形貌
图3  不同频率下制备的微弧氧化膜层极化曲线
Frequency / HzEcorr / VIcorr / μA·cm-2
100-1.290.64
500-1.190.24
1000-1.170.06
表2  与图3极化曲线对应的拟合数据
图4  不同频率下制备的微弧氧化膜层96 h中性盐雾实验后的宏观形貌
Frequency / HzSalt spray test time to level 9 / hSalt spray test time to level 8 / h
1002472
50096144
100096192
表3  不同频率下制备的微弧氧化膜层中性盐雾实验结果

Duty

cycle

Termination

voltage

V

Current

density

A·dm-2

Oxidation

time

min

Thickness

μm

Area

cm2

Energy

consumption

kW·h / (m2·μm)

20%4001177502.32
50%4011149501.29
80%4021129501.12
表4  不同占空比下制备的微弧氧化膜层的能耗
图5  不同占空比下所制备的微弧氧化膜层的微观形貌
图6  不同占空比下制备的微弧氧化膜层极化曲线
Duty cycleEcorr / VIcorr / μA·cm-2
20%-1.170.12
50%-1.190.24
80%-1.260.53
表5  与图6极化曲线对应的拟合数据
图7  不同占空比下制备的微弧氧化膜层96 h中性盐雾实验后的宏观形貌
Duty cycleSalt spray test time to level 9 / hSalt spray test time to level 8 / h
20%96144
50%96144
80%2472
表6  不同占空比下制备的微弧氧化膜层中性盐雾实验结果

Current density

A·dm-2

Termination voltage

V

Oxidation time

min

Thickness

μm

Area

cm2

Energy consumption

kW·h / (m2·μm)

0.54002710501.12
1401149501.29
240188501.65
340167502.13
表7  不同电流密度下制备的微弧氧化膜层的能耗
图8  不同电流密度下所制备的微弧氧化膜层的微观形貌
图9  不同电流密度下所制备的微弧氧化膜层表面孔径尺寸数量分布
图10  不同电流密度下制备的微弧氧化膜层极化曲线

Current density

A·dm-2

Ecorr

V

Icorr

μA·cm-2

0.5-1.190.22
1-1.190.24
2-1.190.28
3-1.210.31
表8  与图10极化曲线对应的拟合数据

Current

density

A·dm-2

Salt spray test time to

level 9 / h

Salt spray test time to

level 8 / h

0.596144
196144
296144
372120
表9  不同电流密度下制备的微弧氧化膜层中性盐雾实验结果
图11  不同电流密度下制备的微弧氧化膜层96 h中性盐雾实验后的宏观形貌
[1] Darband G B, Aliofkhazraei M, Hamghalam P, et al. Plasma electrolytic oxidation of magnesium and its alloys: mechanism, properties and applications [J]. J. Magnes. Alloy., 2017, 5: 74
[2] Lee Y K, Lee K, Jung T. Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution [J]. Electrochem. Commun., 2008, 10: 1716
[3] Li Y, Shi Z M, Chen X R, et al. Anodic hydrogen evolution on Mg [J]. J. Magnes. Alloy., 2021, 9: 2049
[4] Wu Y L, Wu L, Zheludkevich M L, et al. MgAl-V2O7 4- LDHs/(PEI/MXene)10 composite film for magnesium alloy corrosion protection [J]. J. Mater. Sci. Technol., 2021, 91: 28
[5] Zhang R F, Zhang S F, Duo S W. Influence of phytic acid concentration on coating properties obtained by MAO treatment on magnesium alloys [J]. Appl. Surf. Sci., 2009, 255: 7893
[6] Gao X H, Li Y F, Zhu J J, et al. Corrosion mechanism and surface protection method for magnesium-lithium alloy [J]. Chem. Ind. Eng. Prog., 2017, 36: 3373
doi: 10.16085/j.issn.1000-6613.2017-0198
[6] 高晓辉, 李玉峰, 祝晶晶 等. 镁锂合金的腐蚀机理及表面防护方法研究进展 [J]. 化工进展, 2017, 36: 3373
doi: 10.16085/j.issn.1000-6613.2017-0198
[7] Gao W Y, Han Z G, Guo X H, et al. Micro-arc oxidation technology and its application [J]. Hot Work. Technol., 2016, 45(24): 29
[7] 高文英, 韩新罡, 郭新华 等. 微弧氧化技术及其应用 [J]. 热加工工艺, 2016, 45(24): 29
[8] Jia Q R, Cui H W, Zhang T T, et al. General situation on research of micro-arc oxidation technology of magnesium alloys [J]. Mater. Prot., 2018, 51(8): 108
[8] 贾秋荣, 崔红卫, 张甜甜 等. 镁合金微弧氧化技术的研究概况 [J]. 材料保护, 2018, 51(8): 108
[9] Zhai Y B, Chen H B, Ma X T. Comparative study on micro arc oxidation film on AZ31B Mg alloy using pulse DC and AC powers [J]. Hot Work. Technol., 2013, 42(10): 198
[9] 翟彦博, 陈红兵, 马秀腾. 直/交流脉冲电源模式下AZ31B镁合金微弧氧化陶瓷膜的对比研究 [J]. 热加工工艺, 2013, 42(10): 198
[10] Tian M H, Ma Y Z, Ma Y, et al. Development of multimode output micro-arc oxidation power supply controlled with DSC [J]. Power Electron., 2012, 46(9): 88
[10] 田明辉, 马跃洲, 马 颖 等. DSC控制的多输出方式微弧氧化电源研制 [J]. 电力电子技术, 2012, 46(9): 88
[11] Xu C F, Yan X Y, Yang H W, et al. Effect of voltage on the microstructure and corrosion properties of MAO coatings on biodegradable ZK60 Mg alloys [J]. Int. J. Electrochem. Sci., 2018, 13: 3555
[12] Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte [J]. Corros. Sci., 2007, 49: 672
[13] Schlottig F, Schreckenbach J, Marx G. Preparation and characterisation of chromium and sodium tantalate layers by anodic spark deposition [J]. Fresenius J. Anal. Chem., 1999, 363: 209
[14] Matykina E, Berkani A, Skeldon P, et al. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium [J]. Electrochim. Acta, 2007, 53: 1987
[15] Wu T, Gong C L, Wang P. Research progress of micro-arc oxidation in China [J]. Hot Work. Technol., 2015, 44(24): 16
[15] 伍 婷, 龚成龙, 王 平. 中国微弧氧化技术研究进展 [J]. 热加工工艺, 2015, 44(24): 16
[16] Zhang G S, Ding W G, Jiang B, et al. Effects of power supply modes on the microstructure and properties of micro-arc oxidation coatings formed on ADC12 high silicon aluminum alloy [J]. Equip. Environ. Eng., 2020, 17(8): 97
[16] 张广生, 丁伟国, 姜 波 等. 电源模式对ADC12高硅铝合金微弧氧化膜层组织与性能的影响 [J]. 装备环境工程, 2020, 17(8): 97
[17] Timoshenko A V, Magurova Y V. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes [J]. Surf. Coat. Technol., 2005, 199: 135
[18] Wang S Y, Xia Y P, Liu L, et al. Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte [J]. Ceram. Int., 2014, 40: 93
[19] Sun Z H, Liu M, Guo D P, et al. Analysis on recent development and problems of micro-arc oxidation technology [J]. Equip. Environ. Eng., 2009, 6(6): 46
[19] 孙志华, 刘 明, 国大鹏 等. 微弧氧化技术的发展现状和存在问题分析 [J]. 装备环境工程, 2009, 6(6): 46
[20] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering [J]. Surf. Coat. Technol., 1999, 122: 73
[21] Zhou T, Qin Z B, Luo Q, et al. Synthetic effects of frequency and duty ratio on growth characteristics, energy consumption and corrosion properties of microarc oxidized coating formed on Ti6Al4V [J]. Acta Metall. Sin. Engl. Lett., 2018, 31: 1109
[22] Ram Kumar V, Muthupandi V, Sivaprasad K, et al. Effect of frequency and duty cycle on growth, structure and corrosion resistance of micro arc oxidation coating on RZ5 magnesium alloy [J]. Key Eng. Mater., 2018, 775: 291
[23] Wei T B, Zhang X J, Wang B, et al. Effect of current density on growth and adhesion of micro-arc oxidation ceramic coatings on aluminum alloy [J]. Mater. Prot., 2004, 37(4): 4
[23] 魏同波, 张学俊, 王 博 等. 电流密度对铝合金微弧氧化膜的生长及结合力的影响 [J]. 材料保护, 2004, 37(4): 4
[1] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[2] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[3] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[4] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[5] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[6] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[7] 司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[8] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[9] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[10] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[11] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[12] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[13] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[14] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[15] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.