Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 623-634     CSTR: 32134.14.1005.4537.2023.221      DOI: 10.11902/1005.4537.2023.221
  研究报告 本期目录 | 过刊浏览 |
Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为
胡琪1, 耿树江1(), 王金龙1, 王福会1, 孙清云2, 吴勇2, 夏思瑶2
1.东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2.中国机械总院集团武汉材料保护研究所有限公司 武汉 430030
Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl
HU Qi1, GENG Shujiang1(), WANG Jinlong1, WANG Fuhui1, SUN Qingyun2, WU Yong2, XIA Siyao2
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China
引用本文:

胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
Qi HU, Shujiang GENG, Jinlong WANG, Fuhui WANG, Qingyun SUN, Yong WU, Siyao XIA. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 623-634.

全文: PDF(20711 KB)   HTML
摘要: 

采用化学气相沉积(CVD)工艺在镍基高温合金Inconel 718上制备了铝化物涂层,研究了Inconel 718合金及其渗铝涂层在750,850和950℃空气中Na2SO4 + 5% (质量分数)NaCl混合盐膜下的热腐蚀行为。结果表明:基体表现出较差的抗腐蚀性能,且温度越高腐蚀越严重;腐蚀初期表面腐蚀产物主要由Cr2O3和Fe2O3组成,而随着腐蚀时间增加,尖晶石为主要腐蚀产物。此外,基体合金在850和950℃时的腐蚀膜疏松多孔,观察到开裂和剥落,抗腐蚀能力差;而渗铝涂层表现良好,腐蚀期间表面会形成Al2O3膜,极大提高了基体合金的抗腐蚀性能。虽然当腐蚀温度升高或腐蚀时间增加时,涂层会发生明显退化,且会导致腐蚀膜出现裂纹、孔洞等缺陷,其与涂层结合不紧密,但仍能在很大程度上有效保护基体。

关键词 Inconel 718CVD渗铝涂层Na2SO4 + 5%NaCl热腐蚀    
Abstract

Aluminide coating was prepared on Inconel 718 superalloy by chemical vapor deposition (CVD). The hot corrosion behavior of Inconel 718 without and with aluminide coating beneath a thin film of salt mixture of Na2SO4 (95%) + NaCl (5%) in air at 750, 850 and 950oC was studied respectively. The results indicate that Inconel 718 alloy shows poor corrosion resistance, and the higher the temperature, the more serious the corrosion. In the early stage of hot corrosion, the surface corrosion products are mainly composed of Cr2O3 and Fe2O3. As the corrosion time increases, spinel oxide becomes the main corrosion products. In addition, the scale on Inconel 718 alloy formed at 850 and 950oC is loose and porous, while cracking and peeling were observed. For the aluminide coated alloy, it performs well with enhanced corrosion resistance, while an Al2O3 scale is formed on the coating surface during corrosion. Although the coating underwent significant degradation with the increasing corrosion temperature and/or corrosion time. Besides, the formed corrosion scale is not tightly boned to the coating, while the defects such as cracks or voids are observed. Even so, the coating can still protect the substrate effectively to a great extent.

Key wordsInconel 718    CVD aluminide coating    Na2SO4 + 5%NaCl    hot corrosion
收稿日期: 2023-07-13      32134.14.1005.4537.2023.221
ZTFLH:  TG174  
基金资助:国家重点研发计划(2020YFB2010400);湖北省重点研发计划(2021BAA210)
通讯作者: 耿树江,E-mail: gengsj@smm.neu.edu.cn,研究方向为金属材料的高温腐蚀与防护
Corresponding author: GENG Shujiang, Email: gengsj@smm.neu.edu.cn
作者简介: 胡 琪,男,1996年生,博士生
图1  沉积态涂层的形貌与相组成
图2  Inconel 718合金和CVD渗Al涂层在750,850和950℃下Na2SO4 + 5%NaCl混合盐膜下的热腐蚀50 h的质量变化曲线
图3  Inconel 718合金和渗Al涂层在750,850和950℃的Na2SO4 + 5%NaCl混合盐膜下热腐蚀1 h的表面形貌
PositionOAlCrFeNiNbMoTiS
A72.29-26.180.510.500.20-0.130.19
B15.9040.051.234.5538.27----
C64.531.2213.065.4412.032.02-1.100.57
D22.3737.841.173.6135.01----
E78.870.379.350.780.814.280.155.39-
F63.430.8025.173.253.861.72-1.77-
G47.1230.923.123.6415.20----
表1  对应图3不同区域的EDS分析 (atomic fraction / %)
图4  Inconel 718合金和CVD渗Al涂层在750,850和950℃的Na2SO4 + 5%NaCl混合盐中热腐蚀1 h的截面形貌
图5  Inconel 718合金和CVD渗Al涂层在不同温度热腐蚀1 h后的XRD谱
图6  Inconel 718合金和渗Al涂层在750,850和950℃的Na2SO4 + 5%NaCl混合盐中热腐蚀50 h后的表面形貌
PositionOAlCrFeNiNbMoTiS
H63.112.098.2314.603.935.23-2.81-
I53.44-3.8032.4010.36----
J71.791.520.7719.166.76----
K56.0030.341.351.289.63---1.40
L66.9925.772.280.451.18---3.33
M68.180.9925.210.492.351.620.130.780.25
N8.990.622.5117.0365.130.624.99-0.11
O67.0319.292.823.277.29--0.250.05
P58.1638.091.560.610.98--0.330.27
Q63.210.545.0117.4012.281.00-0.56-
R55.6738.814.080.440.57-0.410.02
S67.0628.451.930.911.45----
表2  对应图6不同区域的EDS分析 (atomic fraction / %)
图7  Inconel 718合金和CVD渗Al涂层在750,850和950℃的Na2SO4 + 5%NaCl混合盐中热腐蚀50 h后的截面形貌
图8  Inconel 718合金和渗Al涂层在不同温度腐蚀50 h后的XRD谱
图9  主要合金元素氧化反应的Ellingham-Richardson图
图10  Na2SO4-NaCl体系简化共晶相图
图11  合金元素与熔融态Na2SO4反应的Ellingham-Richardson图
图12  合金元素与熔融态NaCl反应的Ellingham-Richardson图
1 Fan X L, Li D J, Lv B W, et al. Advances in the fundamentals of the manufacture of industrial gas turbine [J]. China Basic Sci., 2018, 20(2): 32
1 范学领, 李定骏, 吕伯文 等. 国之重器, 十载砥砺——重型燃气轮机制造基础研究进展 [J]. 中国基础科学, 2018, 20(2): 32
2 Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49(1): 163
2 杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49(1): 163
3 Zielińska M, Yavorska M, Poręba M, et al. Thermal properties of cast nickel based superalloys [J]. Arch. Mater. Sci. Eng., 2010, 44: 35
4 Li M S. High Temperature Corrosion of Metal [M]. Beijing: Metallurgical Industry Press, 2001
4 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
5 Yang Z L, Hu L M. Process to coat internal cooling passages of turbine blades [J]. J. Mater. Eng., 1996, 24(12): 39
5 杨忠林, 胡立明. 空心叶片内孔道防护工艺的研究 [J]. 材料工程, 1996, 24(12): 39
6 Kosieniak E, Biesiada K, Kaczorowski J, et al. Corrosion failures in gas turbine hot components [J]. J. Fail. Anal. Prev., 2012, 12: 330
doi: 10.1007/s11668-012-9571-3
7 Ziegler D, Puccinelli M, Bergallo B, et al. Investigation of turbine blade failure in a thermal power plant [J]. Case Stud. Eng. Fail. Anal., 2013, 1: 192
8 Pettit F. Hot corrosion of metals and alloys [J]. Oxid. Met., 2011, 76: 1
doi: 10.1007/s11085-011-9254-6
9 Mazur Z, Hernandez-Rossette A, Garcia-Illescas R, et al. Failure analysis of a gas turbine nozzle [J]. Eng. Fail. Anal., 2008, 15: 913
doi: 10.1016/j.engfailanal.2007.10.009
10 Wu D L, Zhang H Y, Wei H, et al. Hot corrosion behaviors of four coatings on Ni-based superalloy [J]. Res. Mater. Sci., 2014, 3(2): 30
10 吴多利, 张洪宇, 韦 华 等. 镍基高温合金表面四种涂层热腐蚀性能的研究 [J]. 材料科学研究, 2014, 3(2): 30
11 Jiang C Y, Feng M, Chen M H, et al. Corrosion behaviour of iron and nickel aluminide coatings under the synergistic effect of NaCl and water vapour [J]. Corros. Sci., 2021, 187: 109484
doi: 10.1016/j.corsci.2021.109484
12 Kanesund J, Brodin H, Johansson S. Hot corrosion influence on deformation and damage mechanisms in turbine blades made of IN-792 during service [J]. Eng. Fail. Anal., 2019, 96: 118
doi: 10.1016/j.engfailanal.2018.10.004
13 Yu X, Song P, He X, et al. Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys [J]. J. Alloy. Compd., 2019, 790: 228
doi: 10.1016/j.jallcom.2019.03.165
14 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
doi: 10.1016/j.actamat.2020.116576
15 Smith A B, Kempster A, Smith J. Vapour aluminide coating of internal cooling channels, in turbine blades and vanes [J]. Surf. Coat. Technol., 1999, 120/121: 112
16 Romanowska J. Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel [J]. Calphad, 2014, 44: 114
doi: 10.1016/j.calphad.2013.09.003
17 Dun Y Z, Wu Y, Zhang L. Research progress of application of CVD method in preparation of modified aluminide coating on nickel base superalloy [J]. Heat Treat. Met., 2018, 43(3): 145
17 顿易章, 吴 勇, 张 磊. CVD法在镍基高温合金表面制备改性铝化物涂层的研究进展 [J]. 金属热处理, 2018, 43(3): 145
18 Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9: 31
doi: 10.1016/S1350-6307(00)00035-2
19 Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
doi: 10.1016/j.surfcoat.2020.126015
20 Luo K Y, Li S H, Xu G, et al. Hot corrosion behaviors of directed energy deposited Inconel 718/Haynes 25 functionally graded material at 700oC and 900oC [J]. Corros. Sci., 2022, 197: 110040
doi: 10.1016/j.corsci.2021.110040
21 Aung N N, Liu X B. Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy-A high temperature electrochemical sensor study [J]. Corros. Sci., 2013, 76: 390
doi: 10.1016/j.corsci.2013.07.012
22 Tsaur C C, Rock J C, Wang C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750oC [J]. Mater. Chem. Phys., 2005, 89: 445
doi: 10.1016/j.matchemphys.2004.10.002
23 Prescott R, Stott F H, Elliott P. Investigations of the degradation of high-temperature alloys in a potentially oxidizing-chloridizing gas mixture [J]. Oxid. Met., 1989, 31: 145
doi: 10.1007/BF00665491
24 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
25 Sui J X, Lehmusto J, Bergelin M, et al. Initial oxidation mechanisms of stainless steel Sanicro 28 (35Fe27Cr31Ni) exposed to KCl, NaCl, and K2CO3 under dry and humid conditions at 535oC [J]. Corros. Sci., 2019, 155: 29
doi: 10.1016/j.corsci.2019.04.010
26 Abu Kassim S, Thor J A, Abu Seman A, et al. High temperature corrosion of Hastelloy C22 in molten alkali salts: the effect of pre-oxidation treatment [J]. Corros. Sci., 2020, 173: 108761
doi: 10.1016/j.corsci.2020.108761
27 Mahobia G S, Paulose N, Singh V. Hot corrosion behavior of superalloy IN718 at 550 and 650oC [J]. J. Mater. Eng. Perform., 2013, 22: 2418
doi: 10.1007/s11665-013-0532-0
28 Holt A, Kofstad P. High temperature corrosion of iron in O2 + 4% SO2/SO3 at 500-800oC [J]. Mater. Sci. Eng., 1989, 120A/121A : 101
[1] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[2] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[3] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[4] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[5] 申聚宝, 崔宇, 刘莉, 刘叡, 孟凡帝, 王福会. DZ40M和K452高温合金在NaCl熔盐中的循环热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[6] 刘姝妤, 耿树江, 马艺萌, 王金龙, 王福会. K444合金表面CVD渗铝涂层在750 ℃空气中耐NaCl腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 321-328.
[7] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[8] 胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[9] 吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[10] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[11] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[12] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[13] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[14] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[15] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.