Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 635-644     CSTR: 32134.14.1005.4537.2023.192      DOI: 10.11902/1005.4537.2023.192
  研究报告 本期目录 | 过刊浏览 |
S420海工钢在不同海洋区带环境下的腐蚀行为研究
麻衡1, 田会云2(), 刘宇茜3, 王月香1, 何康1, 崔中雨2, 崔洪芝2
1.莱芜钢铁集团银山型钢有限公司 济南 271104
2.中国海洋大学材料科学与工程学院 青岛 266100
3.青岛大学机电工程学院 青岛 266071
Corrosion Behavior of S420 Steel in Different Marine Zones
MA Heng1, TIAN Huiyun2(), LIU Yuxi3, WANG Yuexiang1, HE Kang1, CUI Zhongyu2, CUI Hongzhi2
1. Yinshan Section Steel Corporation of Laiwu Steel Group Ltd., Jinan 271104, China
2. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
3. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
引用本文:

麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
Heng MA, Huiyun TIAN, Yuxi LIU, Yuexiang WANG, Kang HE, Zhongyu CUI, Hongzhi CUI. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 635-644.

全文: PDF(20844 KB)   HTML
摘要: 

通过1 a的青岛海域实海暴露实验,结合失重法、宏观和微观形貌、三维形貌和腐蚀产物分析,开展了S420钢在大气、飞溅、潮差和全浸4个不同海洋区带下的腐蚀行为研究。结果表明:S420钢在潮差环境中腐蚀速率最高,大气环境下腐蚀速率最低。一方面,这主要归因于锈层具有持水能力,为阴极反应提供充足的水介质,另一方面,潮差环境的干湿循环使得表面薄液膜中Cl-浓度增加,同时加速了氧的传质过程,促进了腐蚀阴阳极反应速率。腐蚀产物主要由γ-Fe2O3、Fe3O4以及α/γ-FeOOH组成。电解液层的持续存在有利于γ-FeOOH的形成,使其在潮差和全浸环境中占主导地位。充足的氧气和干湿循环促进了Fe3O4的生成,导致其在飞溅环境中以主要形式存在。S420钢在潮差环境下表现出最大点蚀深度和高点蚀体积的局部腐蚀特性。

关键词 低合金钢海洋腐蚀点蚀锈层腐蚀速率    
Abstract

The effect of diverse marine zones on the corrosion behavior of low alloy steels exhibits unique environmental characteristics, leading to significant differences in the corrosion rate of steels, as well as the composition and structure of rust scales. In this paper, the corrosion behavior of S420 steel, exposed in four different marine zones, i.e. atmospheric, splash, tidal, and immersion zones in the sea area of Qingdao by 36° 06' N and 120° 25' E for one year, was assessed by means of mass loss measurement, macroscopic and microscopic morphology observation, three-dimensional morphology detection, and corrosion product analysis. The results show that S420 steel exhibits the highest corrosion rate in the tidal zone and the lowest corrosion rate in marine atmosphere. Which may be attributed to the water-holding ability of the rust scale, thus providing sufficient electrolyte for the cathodic reaction. On the other hand, in the tidal zone, the wet-dry cycle results in the increase of the Cl- concentration, accelerating the anodic reaction. The formed corrosion products are mainly composed of γ-Fe2O3, Fe3O4 and α/γ-FeOOH. The persistent presence of the electrolyte film may facilitate the formation of γ-FeOOH, making it dominant in the rust scales formed in tidal zone and full immersion zone. In the splash zone, the production of Fe3O4 may be promoted due to the synergist of adequate oxygen supply and wet-dry cycle, thus Fe3O4 is dominant in the formed rust scale. In the marine atmosphere, the thickness of the formed rust scale is the smallest, and the value of α/γ* is the largest, which has protective effect against further corrosion of the steel substrate to certain extent. In the tidal zone, the thickness of the formed rust scale is the highest and the value of α/γ* is the lowest, which is loose and porous, and the number and width of cracks within the rust scale are larger and wider, resulting in worst protective effect for the substrate. In other words, the S420 steel exhibits obvious localized corrosion characteristics with the maximum depth and high volume of pits in the tidal zone.

Key wordslow alloy steel    marine corrosion    pitting corrosion    rust layer    corrosion rate
收稿日期: 2023-06-09      32134.14.1005.4537.2023.192
ZTFLH:  TG178  
基金资助:2021年度泰山产业领军人才项目和山东省重点研发项目(2020CXGC010305)
通讯作者: 田会云,E-mail: tianhuiyun@ouc.edu.cn,研究方向为海洋环境腐蚀与应力腐蚀开裂行为
Corresponding author: TIAN Huiyun, E-mail: tianhuiyun@ouc.edu.cn
作者简介: 麻 衡,男,1985年生,正高级工程师
图1  S420钢的宏观腐蚀形貌
图2  S420钢在大气、飞溅、潮差和全浸环境中暴露1 a后的腐蚀速率
图3  S420钢在大气区、飞溅区、潮差区和全浸区中腐蚀1 a后腐蚀产物的腐蚀形貌
图4  S420钢在大气区、飞溅区、潮差区和全浸区4种环境下暴露1 a后的腐蚀产物截面形貌及EDS结果
图5  S420钢在大气区、飞溅区、潮差区和全浸区暴露1 a后去除腐蚀产物后的表面形貌和3D轮廓
图6  S420钢在不同环境下腐蚀1 a后蚀坑深度和体积的累计概率分布
图7  S420钢在不同环境下腐蚀1 a后腐蚀产物的XRD谱以及不同组成相和α/γ*的比值
PhaseRaman shift / cm-1
Lepidocrocite (γ-FeOOH)(248-252)*, (378-380), (528-530), (478-530), (650-655), (1300-1310)
Goethite (α-FeOOH)(241-250), (298-301), (385-395)*, (478-483), (549-552), (680-685), (1000-1120)
Magnetite (Fe3O4)(298-302), (540-550), (663-670)*
Maghemite (γ-Fe2O3)350, (500-506)*, (700-720)*, (1400-1440)*
表1  锈层对应物相的Raman光谱[18,24-26]
图8  S420钢在大气区、飞溅区、潮差区和全浸区环境下腐蚀1 a后腐蚀产物的物相分布
1 Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
2 Wu W, Hao W K, Liu Z Y, et al. Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments [J]. Constr. Build. Mater., 2020, 239: 117903
doi: 10.1016/j.conbuildmat.2019.117903
3 Ma H C, Liu Z Y, Du C W, et al. Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a SO2-polluted marine atmosphere [J]. Mater. Sci. Eng., 2016, 650A: 93
4 Cui Z Y, Chen S S, Wang L W, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater containing thiosulfate [J]. J. Electrochem. Soc., 2017, 164: C856
doi: 10.1149/2.1901713jes
5 Li Y T, Hou B R, Li H L, et al. Corrosion behavior of steel in Chengdao offshore oil exploitation area [J]. Mater. Corros., 2004, 55: 305
6 Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet–dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
7 Yu J X, Wang H K, Yu Y, et al. Corrosion behavior of X65 pipeline steel: comparison of wet-dry cycle and full immersion [J]. Corros. Sci., 2018, 133: 276
doi: 10.1016/j.corsci.2018.01.007
8 Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
doi: 10.5006/1.3280597
9 Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, 642A: 22
10 Jeffrey R, Melchers R E. The changing topography of corroding mild steel surfaces in seawater [J]. Corros. Sci., 2007, 49: 2270
doi: 10.1016/j.corsci.2006.11.003
11 Gong K, Wu M, Liu G X. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments [J]. Constr. Build. Mater., 2020, 235: 117440
doi: 10.1016/j.conbuildmat.2019.117440
12 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
13 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
13 王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
14 Mao Y C, Zhu Y, Deng C M, et al. Analysis of localized corrosion mechanism of 2024 aluminum alloy at a simulated marine splash zone [J]. Eng. Fail. Anal., 2022, 142: 106759
doi: 10.1016/j.engfailanal.2022.106759
15 Xia D H, Ji Y Y, Zhang R F, et al. On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface—Part 1: corrosion initiation mechanism [J]. Corros. Sci., 2023, 213: 110985
doi: 10.1016/j.corsci.2023.110985
16 Zhou X B, Wu T Q, Tan L, et al. A study on corrosion of X80 steel in a simulated tidal zone [J]. J. Mater. Res. Technol., 2021, 12: 2224
doi: 10.1016/j.jmrt.2021.04.014
17 de Brito L V R, Coutinho R, Cavalcanti E H S, et al. The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel [J]. Biofouling, 2007, 23: 193
pmid: 17653930
18 Morcillo M, Chico B, Alcántara J, et al. SEM/micro-raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel [J]. J. Electrochem. Soc., 2016, 163: C426
doi: 10.1149/2.0411608jes
19 Alcántara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: a review [J]. Materials, 2017, 10: 406
doi: 10.3390/ma10040406
20 Lv M Y, Du M. A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. Biotechnol., 2018, 17: 431
doi: 10.1007/s11157-018-9473-2
21 Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation [J]. Corros. Sci., 2019, 150: 258
doi: 10.1016/j.corsci.2019.02.005
22 Huang Y L, Duan J Z, Ma S D. Effects of anaerobe in sea bottom sediment on the corrosion of carbon steel [J]. Mater. Corros., 2004, 55: 46
23 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
24 Yan M X, Li J, Wang Z C, et al. Atmospheric corrosion behavior of Q 460 and Q690 low alloy steels in antarctic environment [J/OL]. Acta Metall. Sin., 2023.
24 闫茂鑫, 李 杰, 王哲超 等. 南极大气环境下Q460和Q690低合金钢的腐蚀行为 [J/OL]. 金属学报, 2023.
25 Li C, Mu X, Wang C G, et al. Insight to atmosphere corrosion behavior of Q345NH steel in Wenchang tropical marine environment [J]. J. Mater. Res. Technol., 2023, 24: 5755
doi: 10.1016/j.jmrt.2023.04.128
26 Zhang T Y, Liu W, Chen L J, et al. On how the corrosion behavior and the functions of Cu, Ni and Mo of the weathering steel in environments with different NaCl concentrations [J]. Corros. Sci., 2021, 192: 109851
doi: 10.1016/j.corsci.2021.109851
27 Tian H Y, Cui Z Y, Ma H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: effect of the marine zones [J]. Corros. Sci., 2022, 206: 110490
doi: 10.1016/j.corsci.2022.110490
28 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
29 Li L M, Zhang J, Bian Y F, et al. Atmospheric corrosion characteristics and regularity of the Q235, 40Cr steels commonly-used in power grid equipment in Anhui Province [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 535
29 李乐民, 张 洁, 卞亚飞 等. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律 [J]. 中国腐蚀与防护学报, 2023, 43: 535
doi: 10.11902/1005.4537.2022.201
30 Liu Z Y, Hao W K, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer [J]. Corros. Sci., 2019, 148: 388
doi: 10.1016/j.corsci.2018.12.029
31 Fan Y, Yang W X, Wang J, et al. Corrosion behavior of Q690qE steel in a simulated coastal-industrial environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 669
31 范 益, 杨文秀, 王 军 等. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 669
32 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
32 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
33 Venkatraman M S, Cole I S, Emmanuel B. Model for corrosion of metals covered with thin electrolyte layers: pseudo-steady state diffusion of oxygen [J]. Electrochim. Acta, 2011, 56: 7171
doi: 10.1016/j.electacta.2011.05.009
34 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
35 Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers [J]. Corros. Sci., 1983, 23: 969
doi: 10.1016/0010-938X(83)90024-0
[1] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[3] 彭立园, 吴欣强, 张兹瑜, 谭季波. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[4] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[5] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[6] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[7] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[8] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[10] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[11] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[12] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[13] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[14] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[15] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.