Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 489-496     CSTR: 32134.14.1005.4537.2023.131      DOI: 10.11902/1005.4537.2023.131
  研究报告 本期目录 | 过刊浏览 |
基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究
韩东晓1, 纪文会2, 王通2, 王巍2()
1.北京航天新立科技有限公司 北京 100039
2.中国海洋大学材料科学与工程学院 青岛 266100
Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation
HAN Dongxiao1, JI Wenhui2, WANG Tong2, WANG Wei2()
1.Beijing Shiny Tech. Co. Ltd., Beijing 100039, China
2.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
Dongxiao HAN, Wenhui JI, Tong WANG, Wei WANG. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 489-496.

全文: PDF(4848 KB)   HTML
摘要: 

采用弛豫时间分布(DRT)技术和有限元模拟方法,从微观电化学角度分析研究了环氧涂层的渗水行为过程。结果表明:环氧涂层的渗水过程分为3个阶段:初始阶段、饱和阶段和失效阶段。3个阶段中,涂层内部水和腐蚀性介质的含量不同,会严重影响涂层的电容变化。本文为有机防护涂层的机理研究提供了一种新的综合分析方法。

关键词 环氧涂层渗水弛豫时间分布有限元模拟腐蚀机理    
Abstract

In fact, the variation of water content within an organic coating will affect its corrosion protection performance. Thus, the penetration of water in an epoxy coating would be studied via distribution of relaxation time (DRT) technique and finite element simulation method in terms of the perspective of micro electrochemistry in this article. Results show that the water penetration process of the epoxy coating may be differentiated into three stages: initial stage, saturation stage and failure stage. In the three stages, the different content of water and corrosive medium inside the coating can seriously affect the variation of capacitance of the coating. This paper provides a new comprehensive analysis method for the mechanism study of organic protective coatings.

Key wordsepoxy coating    water penetration    distribution of relaxation time    finite element simulation    corrosion mechanism
收稿日期: 2023-05-04      32134.14.1005.4537.2023.131
ZTFLH:  TG174  
基金资助:国家自然科学基金(42076039)
通讯作者: 王巍,E-mail:wangwei8038@ouc.edu.cn,研究方向为海洋腐蚀与防护
Corresponding author: WANG Wei, E-mail: wangwei8038@ouc.edu.cn
作者简介: 韩东晓,男,1986年生,博士,高级工程师
图1  环氧涂层渗水过程的EIS图
图2  环氧涂层渗水过程的等效电路模型
图3  环氧涂层渗水过程的DRT图
图4  环氧涂层渗水过程的DRT分峰图
Time / dτ1τ2τ3
lgτ1Arealgτ2Arealgτ3Area
1-0.111675.4%--1.550824.6%
2-0.429077.2%--1.483927.8%
3-0.823139.0%-0.253236.4%1.432224.6%
10-1.218637.5%-0.159336.5%1.321126.0%
20-1.314232.3%-0.188437.8%1.307229.9%
30-1.322133.9%-0.245036.1%1.255130.0%
40-1.420447.8%-0.303128.6%1.330423.6%
50-1.713168.3%-0.180020.2%1.345211.5%
60-1.965261.0%-0.238618.3%1.108420.7%
表1  环氧涂层渗水过程的DRT分析时间常数位置和面积比
图5  环氧涂层渗水过程的OCP和|Z|0.01 Hz变化图
图6  环氧涂层渗水过程的涂层电容Cc变化图
图7  环氧涂层渗水过程位置监测点的Cl-浓度变化模拟曲线
图8  环氧涂层渗水过程的Cl-浓度变化模拟图
1 Ye Z Q, Tang Z X, Meng G Z, et al. Mussel-inspired preparation of dispersible mica nanosheets for waterborne epoxy coatings with reinforced anticorrosive performance[J]. Prog. Org. Coat., 2023, 175: 107379
2 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
3 El Ibrahimi B, Jmiai A, Bazzi L, et al. Amino acids and their derivatives as corrosion inhibitors for metals and alloys[J]. Arab. J. Chem., 2020, 13: 740
doi: 10.1016/j.arabjc.2017.07.013
4 Gong W N, Yin X S, Liu Y, et al. 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium[J]. Prog. Org. Coat., 2019, 126: 150
5 Glover C F, Cain T W, Scully J R. Performance of Mg-Sn surface alloys for the sacrificial cathodic protection of Mg alloy AZ31B-H24[J]. Corros. Sci., 2019, 149: 195
doi: 10.1016/j.corsci.2019.01.015
6 Wan S, Chen H K, Ma X Z, et al. Anticorrosive reinforcement of waterborne epoxy coating on Q235 steel using NZ/BNNS nanocomposites[J]. Prog. Org. Coat., 2021, 159: 106410
7 Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
7 陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
8 Lavaert V, De Cock M, Moors M, et al. Influence of pores on the quality of a silicon polyester coated galvanised steel system[J]. Prog. Org. Coat., 2000, 38: 213
doi: 10.1016/S0300-9440(00)00107-7
9 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
9 高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
10 He J, Yan R, Ma S N. Study on corrosion behaviors of epoxy coatings/substrate immersed in 3.5%NaCl solution by electrochemical methods[J]. China Surf. Eng., 2006, 19(2): 47
10 何 杰, 阎 瑞, 马世宁. 电化学方法研究环氧涂层/基体在3.5%NaCl溶液中的腐蚀行为[J]. 中国表面工程, 2006, 19(2): 47
11 Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells[J]. J. Appl. Electrochem., 2002, 32: 875
doi: 10.1023/A:1020599525160
12 Fuoss R M, Kirkwood J G. Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems[J]. J. Am. Chem. Soc., 1941, 63: 385
doi: 10.1021/ja01847a013
13 Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach[J]. Electrochim. Acta, 2015, 167: 439
doi: 10.1016/j.electacta.2015.03.123
14 Shi W Y, Jia C, Zhang Y L, et al. Differentiation and decomposition of solid oxide fuel cell electrochemical impedance spectra[J]. Acta Phys. -Chim. Sin., 2019, 35: 509
doi: 10.3866/PKU.WHXB201806071
14 施王影, 贾 川, 张永亮 等. 固体氧化物燃料电池电化学阻抗谱差异化研究方法和分解[J]. 物理化学学报, 2019, 35: 509
15 Loew N, Watanabe H, Shitanda I, et al. Electrochemical impedance spectroscopy: simultaneous detection of different diffusion behaviors as seen in finite element method simulations of mediator-type enzyme electrodes[J]. Electrochim. Acta, 2022, 421: 140467
doi: 10.1016/j.electacta.2022.140467
16 Wang T, Wang W. Distribution of relaxation time of polydimethylsiloxane coatings during self-healing process[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 337
16 王 通, 王 巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43: 337
[1] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[2] 郭诗雯, 吴浩志, 董绍华, 陈林, 程玉峰. 含双腐蚀缺陷管道的氢浓度分布模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[3] 赵璐, 李谦, 赵天亮. 青铜器腐蚀行为与封护技术[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[4] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[5] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[6] 刘明明, 杨小兵, 陈晓琪, 王政彬, 郑玉贵, 贺春林. 醋酸环境下金属材料腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[7] 王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[8] 刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[9] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[10] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[11] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[12] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[13] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[14] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[15] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.