Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 381-388     CSTR: 32134.14.1005.4537.2023.097      DOI: 10.11902/1005.4537.2023.097
  研究报告 本期目录 | 过刊浏览 |
AZ31B镁合金超双疏表面的制备及其耐蚀性研究
司伟婷, 张吉昊, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266400
Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance
SI Weiting, ZHANG Jihao, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266400, China
引用本文:

司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
Weiting SI, Jihao ZHANG, Rongjie GAO. Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 381-388.

全文: PDF(10727 KB)   HTML
摘要: 

以AZ31B镁合金为基底,利用HNO3溶液刻蚀结合1H, 1H, 2H, 2H-全氟癸基三乙氧基硅烷(PFDTES)修饰的方法,成功制备了超双疏表面,其对于水的接触角为159.3°,乙二醇的接触角为155.2°。电化学测试结果表明,相较于裸样,其腐蚀电位正移297 mV,腐蚀电流密度降低了3个数量级,电荷转移电阻提升了2个数量级,耐腐蚀效果得到良好提升,即使在3.5%NaCl溶液中浸泡72 h,依然保持较好的耐蚀性。

关键词 超双疏表面镁合金化学刻蚀腐蚀防护    
Abstract

Superamphiphobic surface films were successfully prepared on AZ31B Mg-alloy via etching with HNO3 solution and afterwards modifying with PFDTES (1H, 1H, 2H,2H-perfluorodecyltriethoxysilane). The superamphiphobic surface film were characterized by means of scanning electron microscope (SEM), X-ray diffractometry (XRD), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectrometer (XPS). The static contact angle (CA) was measured by optical contact angle meter to estimate their wettability, The electrochemical performance was evaluated in 3.5%NaCl aqueous solution by electrochemical work-station to estimate their corrosion resistance. Results show that the non-uniform distribution of chemical composition of the Mg-alloy leads to different dissolution rates and degrees of the alloy surface during the etching process, resulting in different morphology on surface. The special microstructure formed on the etched alloy surface, combined with the modification of low surface energy materials (PFDTES), enables the formation of a film with excellent liquid repellency on Mg-alloy. The contact angles (CAs) of water and ethylene glycol on the modified Mg-alloy surface were 159.3° and 155.2° respectively. In contrast to the bare Mg-alloy, the free corrosion potential of the superamphiphobic film covered Mg-alloy shifted positively by 297 mV, and the corrosion current density decreases by more than 3 orders of magnitude, the charge transfer resistance increases by more than 2 orders of magnitude, in other word, the anti-corrosion performance of the AZ31B Mg-alloy was well improved by the surface modification. Even after soaking in 3.5%NaCl solution for 72 h, the Mg-alloy with superamphiphobic film still maintains good corrosion resistance.

Key wordssuperamphiphobic surface    AZ31B magnesium alloy    chemical etching    anti-corrosion
收稿日期: 2023-04-03      32134.14.1005.4537.2023.097
ZTFLH:  TG174  
基金资助:国家自然科学基金-山东省联合基金(U1706221)
通讯作者: 高荣杰,E-mail:dmh206@ouc.edu.cn,研究方向为阴极保护设计与检测
Corresponding author: GAO Rongjie, E-mail: dmh206@ouc.edu.cn
作者简介: 司伟婷,女,1995年生,硕士生
图1  镁合金超双疏表面的制备流程示意图
图2  刻蚀时间对接触角的影响

Liquid

Surface

tension (20oC)

mN·m-1

Bare

Sanding

Sanding + modifying

Sanding +etching

Sanding + etching + modifying
Water72.8°75.8°34.1°128.8°13.6°159.3°
Ethylene glycol47.7°63.5°13.2°113.6°155.2°
表1  不同液体在不同加工条件下试样接触角的变化
图3  试样基体及超双疏试样表面形貌
图4  基体及超双疏试样的XRD谱
图 5  超双疏试样的EDS谱
图6  超双疏试样的XPS谱
图 7  基体和超双疏试样在3.5%NaCl 溶液中的电化学测试
图8  基体和浸泡不同时间的超双疏试样的等效电路
SampleRs
Ω·cm2
CPE
Y0 (S·sec n) n
Rct
Ω·cm2
Rf
Ω·cm2
Cdl
F·cm-2
RL
Ω·cm2
L
H·cm2
bare13.912.049 × 10-50.924041.93//57.0140.93
0 h18.713.239 × 10-60.72978580175.01.148 × 10-787946517
2 h14.373.506 × 10-60.8240217259.511.298 × 10-6909.44942
12 h11.686.741 × 10-60.8928133121.132.638 × 10-6885.38950
48 h17.282.927 × 10-50.9507923.8//364.083.07
72 h12.023.899 × 10-50.9131357.6//405.71570
表2  电化学拟合参数
图9  试样在3.5%NaCl溶液中浸泡不同时间的表面宏观形貌图
1 Burkert A, Müller T, Lehmann J, et al. Long-term corrosion behaviour of stainless steels in marine atmosphere[J]. Mater. Corros., 2018, 69: 20
2 Xing W H, Wang X H, Guo B X, et al. Study of the corrosion characteristics of the metal materials of an aero-engine under a marine atmosphere[J]. Mater. Corros., 2018, 69: 1861
3 Yi E, Kang H S, Lim S M, et al. Superamphiphobic blood-repellent surface modification of porous fluoropolymer membranes for blood oxygenation applications[J]. J. Membrane Sci., 2022, 648: 120363
doi: 10.1016/j.memsci.2022.120363
4 Tang Y, Nong Z S, Wu B L, et al. Study of novel, thermally resistant Mg alloy with dual-phase[J]. Mater. Sci. Technol., 2021, 37: 1
doi: 10.1080/02670836.2020.1859711
5 Kamei J, Saito Y, Yabu H. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film[J]. Langmuir, 2014, 30: 14118
doi: 10.1021/la5035454 pmid: 25401223
6 Chen T C, Yan W, Liu H T, et al. Facile preparation of superamphiphobic phosphate-Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance[J]. J. Mater. Sci., 2017, 52: 4675
doi: 10.1007/s10853-016-0710-1
7 Gray-Munro J, Campbell J. Mimicking the hierarchical surface topography and superhydrophobicity of the lotus leaf on magnesium alloy AZ31[J]. Mater. Lett., 2017, 189: 271
doi: 10.1016/j.matlet.2016.11.102
8 Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on Al-alloy and its corrosion resistance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
8 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
9 Wu S W, Du Y J, Alsaid Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 11240
doi: 10.1073/pnas.2001972117 pmid: 32393646
10 Cheng Y, Zhu T X, Li S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chem. Eng. J., 2019, 355: 290
doi: 10.1016/j.cej.2018.08.113
11 Zhang S, Shu X Y, Chen S Z, et al. Rapid immobilization of simulated radioactive soil waste by microwave sintering[J]. J. Hazard. Mater., 2017, 337: 20
doi: S0304-3894(17)30339-4 pmid: 28501640
12 Zhang Z, Wu G H, Atrens A, et al. Influence of trace As content on the microstructure and corrosion behavior of the AZ91 alloy in different metallurgical conditions[J]. J. Magnes. Alloy., 2020, 8: 301
doi: 10.1016/j.jma.2019.12.004
13 Bai C Y, Hu C B, Zhang X, et al. A rapid two-step method for fabrication of superhydrophobic-superoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties[J]. Colloids Surf., 2022, 651: 129635
doi: 10.1016/j.colsurfa.2022.129635
14 Wan H R, Hu X F. One-step solve-thermal process for the construction of anticorrosion bionic superhydrophobic surfaces on magnesium alloy[J]. Mater. Lett., 2016, 174: 209
doi: 10.1016/j.matlet.2016.03.104
15 Xu W J, Song J L, Sun J, et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4404
doi: 10.1021/am2010527
16 Feng L B, Zhu Y L, Fan W B, et al. Fabrication and corrosion resistance of superhydrophobic magnesium alloy[J]. Appl. Phys., 2015, 120A: 561
17 Liang M M, Wei Y H, Hou L F, et al. Fabrication of a super-hydrophobic surface on a magnesium alloy by a simple method[J]. J. Alloy. Compd., 2016, 656: 311
doi: 10.1016/j.jallcom.2015.09.234
18 Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
doi: 10.1016/j.electacta.2014.01.135
19 Gao R, Wang J, Zhang X F, et al. Fabrication of superhydrophobic magnesium alloy through the oxidation of hydrogen peroxide[J]. Colloids Surf., 2013, 436A: 906
20 Liu Y, Yao W G, Yin X M, et al. Controlling wettability for improved corrosion inhibition on magnesium alloy as biomedical implant materials[J]. Adv. Mater. Interfaces, 2016, 3: 1500723
doi: 10.1002/admi.v3.8
21 Zhang X, Ma Q Y, Dai Y, et al. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy[J]. Appl. Surf. Sci., 2018, 427: 897
doi: 10.1016/j.apsusc.2017.09.024
22 Zhang H L, Li D K, Huang J X, et al. Advance in structural classification and stability study of superamphiphobic surfaces[J]. J. Bionic Eng., 2023, 20: 366
doi: 10.1007/s42235-022-00270-5
23 Rezayi T, Entezari M H, Moosavi F. The variation of surface free energy of Al during superhydrophobicity processing[J]. Chem. Eng. J., 2017, 322: 181
doi: 10.1016/j.cej.2017.04.023
24 Emelyanenko K A, Chulkova E V, Semiletov A M, et al. The potential of the superhydrophobic state to protect magnesium alloy against corrosion[J]. Coatings, 2022, 12: 74
doi: 10.3390/coatings12010074
25 Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy[J]. Corros. Sci., 2009, 51: 1789
doi: 10.1016/j.corsci.2009.05.005
26 Deng R, Hu Y M, Wang L, et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces[J]. Appl. Surf. Sci., 2017, 402: 301
doi: 10.1016/j.apsusc.2017.01.091
27 Tang L L, Wang N, Han Z Y, et al. Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property[J]. Colloids Surf., 2020, 594A: 124655
28 Xu B Q, Sun J P, Han J, et al. Effect of hierarchical precipitates on corrosion behavior of fine-grain magnesium-gadolinium-silver alloy[J]. Corros. Sci., 2022, 194: 109924
doi: 10.1016/j.corsci.2021.109924
29 Liu K S, Zhang M L, Zhai J, et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance[J]. Appl. Phys. Lett., 2008, 92: 183103
doi: 10.1063/1.2917463
30 Zhang J Y, Kang Z X. Effect of different liquid-solid contact models on the corrosion resistance of superhydrophobic magnesium surfaces[J]. Corros. Sci., 2014, 87: 452
doi: 10.1016/j.corsci.2014.07.010
[1] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[2] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[4] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[5] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[6] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[7] 骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[8] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[9] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[10] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[11] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[12] 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 966-972.
[13] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[14] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[15] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.