|
|
AZ31B镁合金超双疏表面的制备及其耐蚀性研究 |
司伟婷, 张吉昊, 高荣杰( ) |
中国海洋大学材料科学与工程学院 青岛 266400 |
|
Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance |
SI Weiting, ZHANG Jihao, GAO Rongjie( ) |
School of Materials Science and Engineering, Ocean University of China, Qingdao 266400, China |
引用本文:
司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
Weiting SI,
Jihao ZHANG,
Rongjie GAO.
Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 381-388.
1 |
Burkert A, Müller T, Lehmann J, et al. Long-term corrosion behaviour of stainless steels in marine atmosphere[J]. Mater. Corros., 2018, 69: 20
|
2 |
Xing W H, Wang X H, Guo B X, et al. Study of the corrosion characteristics of the metal materials of an aero-engine under a marine atmosphere[J]. Mater. Corros., 2018, 69: 1861
|
3 |
Yi E, Kang H S, Lim S M, et al. Superamphiphobic blood-repellent surface modification of porous fluoropolymer membranes for blood oxygenation applications[J]. J. Membrane Sci., 2022, 648: 120363
doi: 10.1016/j.memsci.2022.120363
|
4 |
Tang Y, Nong Z S, Wu B L, et al. Study of novel, thermally resistant Mg alloy with dual-phase[J]. Mater. Sci. Technol., 2021, 37: 1
doi: 10.1080/02670836.2020.1859711
|
5 |
Kamei J, Saito Y, Yabu H. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film[J]. Langmuir, 2014, 30: 14118
doi: 10.1021/la5035454
pmid: 25401223
|
6 |
Chen T C, Yan W, Liu H T, et al. Facile preparation of superamphiphobic phosphate-Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance[J]. J. Mater. Sci., 2017, 52: 4675
doi: 10.1007/s10853-016-0710-1
|
7 |
Gray-Munro J, Campbell J. Mimicking the hierarchical surface topography and superhydrophobicity of the lotus leaf on magnesium alloy AZ31[J]. Mater. Lett., 2017, 189: 271
doi: 10.1016/j.matlet.2016.11.102
|
8 |
Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on Al-alloy and its corrosion resistance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
|
8 |
李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
|
9 |
Wu S W, Du Y J, Alsaid Y, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 11240
doi: 10.1073/pnas.2001972117
pmid: 32393646
|
10 |
Cheng Y, Zhu T X, Li S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chem. Eng. J., 2019, 355: 290
doi: 10.1016/j.cej.2018.08.113
|
11 |
Zhang S, Shu X Y, Chen S Z, et al. Rapid immobilization of simulated radioactive soil waste by microwave sintering[J]. J. Hazard. Mater., 2017, 337: 20
doi: S0304-3894(17)30339-4
pmid: 28501640
|
12 |
Zhang Z, Wu G H, Atrens A, et al. Influence of trace As content on the microstructure and corrosion behavior of the AZ91 alloy in different metallurgical conditions[J]. J. Magnes. Alloy., 2020, 8: 301
doi: 10.1016/j.jma.2019.12.004
|
13 |
Bai C Y, Hu C B, Zhang X, et al. A rapid two-step method for fabrication of superhydrophobic-superoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties[J]. Colloids Surf., 2022, 651: 129635
doi: 10.1016/j.colsurfa.2022.129635
|
14 |
Wan H R, Hu X F. One-step solve-thermal process for the construction of anticorrosion bionic superhydrophobic surfaces on magnesium alloy[J]. Mater. Lett., 2016, 174: 209
doi: 10.1016/j.matlet.2016.03.104
|
15 |
Xu W J, Song J L, Sun J, et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4404
doi: 10.1021/am2010527
|
16 |
Feng L B, Zhu Y L, Fan W B, et al. Fabrication and corrosion resistance of superhydrophobic magnesium alloy[J]. Appl. Phys., 2015, 120A: 561
|
17 |
Liang M M, Wei Y H, Hou L F, et al. Fabrication of a super-hydrophobic surface on a magnesium alloy by a simple method[J]. J. Alloy. Compd., 2016, 656: 311
doi: 10.1016/j.jallcom.2015.09.234
|
18 |
Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochim. Acta, 2014, 125: 395
doi: 10.1016/j.electacta.2014.01.135
|
19 |
Gao R, Wang J, Zhang X F, et al. Fabrication of superhydrophobic magnesium alloy through the oxidation of hydrogen peroxide[J]. Colloids Surf., 2013, 436A: 906
|
20 |
Liu Y, Yao W G, Yin X M, et al. Controlling wettability for improved corrosion inhibition on magnesium alloy as biomedical implant materials[J]. Adv. Mater. Interfaces, 2016, 3: 1500723
doi: 10.1002/admi.v3.8
|
21 |
Zhang X, Ma Q Y, Dai Y, et al. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy[J]. Appl. Surf. Sci., 2018, 427: 897
doi: 10.1016/j.apsusc.2017.09.024
|
22 |
Zhang H L, Li D K, Huang J X, et al. Advance in structural classification and stability study of superamphiphobic surfaces[J]. J. Bionic Eng., 2023, 20: 366
doi: 10.1007/s42235-022-00270-5
|
23 |
Rezayi T, Entezari M H, Moosavi F. The variation of surface free energy of Al during superhydrophobicity processing[J]. Chem. Eng. J., 2017, 322: 181
doi: 10.1016/j.cej.2017.04.023
|
24 |
Emelyanenko K A, Chulkova E V, Semiletov A M, et al. The potential of the superhydrophobic state to protect magnesium alloy against corrosion[J]. Coatings, 2022, 12: 74
doi: 10.3390/coatings12010074
|
25 |
Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy[J]. Corros. Sci., 2009, 51: 1789
doi: 10.1016/j.corsci.2009.05.005
|
26 |
Deng R, Hu Y M, Wang L, et al. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces[J]. Appl. Surf. Sci., 2017, 402: 301
doi: 10.1016/j.apsusc.2017.01.091
|
27 |
Tang L L, Wang N, Han Z Y, et al. Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property[J]. Colloids Surf., 2020, 594A: 124655
|
28 |
Xu B Q, Sun J P, Han J, et al. Effect of hierarchical precipitates on corrosion behavior of fine-grain magnesium-gadolinium-silver alloy[J]. Corros. Sci., 2022, 194: 109924
doi: 10.1016/j.corsci.2021.109924
|
29 |
Liu K S, Zhang M L, Zhai J, et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance[J]. Appl. Phys. Lett., 2008, 92: 183103
doi: 10.1063/1.2917463
|
30 |
Zhang J Y, Kang Z X. Effect of different liquid-solid contact models on the corrosion resistance of superhydrophobic magnesium surfaces[J]. Corros. Sci., 2014, 87: 452
doi: 10.1016/j.corsci.2014.07.010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|