Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 389-395     CSTR: 32134.14.1005.4537.2023.119      DOI: 10.11902/1005.4537.2023.119
  研究报告 本期目录 | 过刊浏览 |
NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究
王彤彤, 张隽睿, 高云, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance
WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
Tongtong WANG, Juanrui ZHANG, Yun GAO, Rongjie GAO. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 389-395.

全文: PDF(4122 KB)   HTML
摘要: 

采用二次阳极氧化法在NH4F-(NH4)2SO4复合电解液中制备近似莲藕状TiO2纳米管阵列(TNTAs)。通过XRD、SEM、PL(光致发光光谱)等手段研究了不同阳极氧化电压下制备的TNTAs的结构、形貌以及光生载流子的分离率。同时,在模拟太阳光下,通过测试光生电流密度评估其光电化学性能,通过测试开路电位、Tafel极化电位和EIS拟合曲线评估对304SS的阴极保护效果。结果显示,当阳极氧化电压为25 V时,TNTAs莲藕状清晰,规整度较高,光生载流子分离率高,光生电流密度达到最高值为309.2 µA·cm-2,开路电位达到最低值-0.986 V( vs. Ag/AgCl)时,对304SS的阴极保护效果较好。

关键词 TiO2纳米管阳极氧化光电化学光生阴极保护    
Abstract

At present, TiO2, as a low-cost and non-polluting N-type semiconductor material, has been applied to photogenerated cathodic protection technology due to its excellent photoelectric conversion performance. In comparison with the ordinary nanotube arrays, the highly ordered lotus root-like TiO2 nanotube arrays (TNTAs) present much larger specific surface area and more effective photoreaction sites, which is conductive to enhancing the photoelectrochemical properties of TiO2 nanotube arrays. In this paper, lotus root-like TiO2 nanotube arrays were prepared by a two-step anodization process in NH4F-(NH4)2SO4 composite electrolyte. The effect of different anodization voltages on the performance of TiO2 nanotube photoanodes was studied. The structure, morphology and separation rate of photogenerated carriers of TNTAs prepared by different appllied anodic oxidation voltages were studied by XRD, SEM and photoluminescence spectra (PL). At the same time, under the irradiation of a simulated sunlight, the photoelectrochemical performance was evaluated by the photocurrent density measurement, and the cathodic protection effect of the photoanode on 304 stainless steel was evaluated by measurements of open circuit potential and Tafel polarization potential, as well as by fitting EIS curves. The results show that when the anodic oxidation voltage is 25 V, TNTAs have clear lotus root-like shape, high regularity, high photogenerated carrier separation rate and high photogenerated current density. Accordingly, the prepared TNTAs present lower open circuit potential, while better cathodic protection effect for 304 stainless steel substrates.

Key wordsTiO2 nanotubes    anodic oxidation    photoelectrochemistry    photocathode protection
收稿日期: 2023-04-18      32134.14.1005.4537.2023.119
ZTFLH:  TG172  
基金资助:国家自然科学基金-山东省联合基金(U1706221)
通讯作者: 高荣杰,E-mail:dmh206@ouc.edu.cn,研究方向为海洋腐蚀与防护,阴极保护
Corresponding author: GAO Rongjie, E-mail: dmh206@ouc.edu.cn
作者简介: 王彤彤,女,1998年生,硕士生
图1  光生阴极保护性能测试装置示意图
图2  XV-TNTAs的XRD图谱
图 3  XV-TNTAs的XPS图谱
图4  XV-TNTAs的横纵截面SEM形貌
图5  XV-TNTAs的光致发光图谱
图6  XV-TNTAs光阳极在间歇模拟太阳光下的光生电流-时间曲线
图7  XV-TNTAs的开路电位-时间曲线
图8  XV-TNTAs耦联304不锈钢Tafel极化曲线
图9  XV-TNTAs的电化学阻抗谱的Nyquist图及其等效电路
Sample

Rs

Ω·cm2

Rct

Ω·cm2

CPE-T

× 10-3 S·s n ·cm-2

n
304 stainless steel29.873668.001.6850.901
15V-TNTAs28.673059.001.0780.885
20V-TNTAs26.872207.001.1800.924
25V-TNTAs30.141329.000.9360.837
30V-TNTAs30.152019.001.0980.896
表1  XV-TNTAs的电化学阻抗谱拟合参数
1 Bu Y Y, Ao J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy Environ., 2017, 2: 331
doi: 10.1016/j.gee.2017.02.003
2 Williams D E, Newman R C, Song Q, et al. Passivity breakdown and pitting corrosion of binary alloys[J]. Nature, 1991, 350: 216
doi: 10.1038/350216a0
3 Jiang J H, Zhang X Y, Jin Z Q. Research progress in photochemical cathodic protection technology[J]. Mar. Sci., 2021, 45: 150
3 蒋继宏, 张小影, 金祖权. 光电化学阴极保护技术研究进展[J]. 海洋科学, 2021, 45: 150
4 Christodoulou C, Glass G, Webb J, et al. Assessing the long term benefits of impressed current cathodic protection[J]. Corros. Sci., 2010, 52: 2671
doi: 10.1016/j.corsci.2010.04.018
5 Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in Titania[J]. Science, 1998, 281: 802
pmid: 9694646
6 Chen F W, Liu B, Jian D H, et al. Research progress and existing problems of photocathodic protection technology[J]. J. Mater. Eng., 2021, 49: 83
6 陈凡伟, 刘 斌, 蹇冬辉 等. 光生阴极保护技术的研究进展及其存在的问题[J]. 材料工程, 2021, 49: 83
doi: 10.11868/j.issn.1001-4381.2021.000469
7 Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95: 735
doi: 10.1021/cr00035a013
8 Yu H G, Irie H, Hashimoto K. Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst[J]. J. Am. Chem. Soc., 2010, 132: 6898
doi: 10.1021/ja101714s pmid: 20429504
9 Chen X B, Mao S S. Titanium dioxide nanomaterials:  synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007, 107: 2891
doi: 10.1021/cr0500535
10 Sun L D, Zhang S, Sun X W, et al. Effect of the geometry of the anodized Titania nanotube array on the performance of dye-sensitized solar cells[J]. J. Nanosci. Nanotechnol., 2010, 10: 4551
pmid: 21128456
11 Choi J Y, Hoon Sung Y, Choi H J, et al. Fabrication of Au nanoparticle-decorated TiO2 nanotube arrays for stable photoelectrochemical water splitting by two-step anodization[J]. Ceram. Int., 2017, 43: 14063
doi: 10.1016/j.ceramint.2017.07.141
12 Mohan L, Dennis C, Padmapriya N, et al. Effect of electrolyte temperature and anodization time on formation of TiO2 nanotubes for biomedical applications[J]. Mater. Today Commun., 2020, 239: 101103
13 Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
13 鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
14 Farsak M, Keleş H, Keleş M. A new corrosion inhibitor for protection of low carbon steel in HCl solution[J]. Corros. Sci., 2015, 98: 223
doi: 10.1016/j.corsci.2015.05.036
15 Cong Y, Zhang J L, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity[J]. J. Phys. Chem., 2007, 111C: 6976
16 Guo H X, Li L L, Su C, et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes[J]. Mater. Chem. Phys., 2021, 258: 123914
doi: 10.1016/j.matchemphys.2020.123914
[1] 叶梦颖, 于佳汇, 王彤彤, 高荣杰. Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[2] 胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[3] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[4] 于帅先, 吴亚军, 武海生, 吴量, 麻彦龙, 邓盛卫, 孙立东. 钛酸酯改性硅烷涂层优化及其对5056铝箔耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[5] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[8] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[9] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[10] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[11] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[12] 崔学军,代鑫,郑冰玉,张颖君. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[13] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[14] 檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[15] 石建敏, 张玲, 陈静, 沈春雷, 雷家荣, 周晓松. 乏燃料贮存环境中Al-B4C复合材料的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 419-424.