中国腐蚀与防护学报, 2023, 43(4): 737-745 DOI: 10.11902/1005.4537.2023.151

中国腐蚀与防护学会杰出青年成就奖论文专栏

海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究

王长罡1, DANIEL Enobong Felix1, 李超1, 董俊华,1, 杨华2, 张东玖,2

1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016

2.西昌卫星发射中心 航天发射场可靠性技术重点实验室 海口 571126

Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments

WANG Changgang1, DANIEL Enobong Felix1, LI Chao1, DONG Junhua,1, YANG Hua2, ZHANG Dongjiu,2

1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2.Key Laboratory of Space Launching Site Reliability, Xichang Satellite Launch Center, Haikou 571126, China

通讯作者: 董俊华,E-mail:jhdong@imr.ac.cn,研究方向为耐蚀材料设计与腐蚀监检测;张东玖,E-mail:zhangdongjiu923@sohu.con,研究方向为金属腐蚀管理

收稿日期: 2023-05-09   修回日期: 2023-05-31  

基金资助: 中国科学院青年创新促进会.  2019193
中国科学院青年创新促进会.  KGFZD-135-19-02

Corresponding authors: DONG Junhua, E-mail:jhdong@imr.ac.cnZHANG Dongjiu, E-mail:zhangdongjiu923@sohu.con

Received: 2023-05-09   Revised: 2023-05-31  

Fund supported: Youth Innovation Promotion Association of the Chinese Academy of Sciences.  2019193
Youth Innovation Promotion Association of the Chinese Academy of Sciences.  KGFZD-135-19-02

作者简介 About authors

王长罡,男,1985年生,博士,研究员,2012年毕业于中国科学院金属研究所,获博士学位。现就职于中国科学院金属研究所,研究员,硕士生导师。王长罡博士长期致力于以现役的高通量腐蚀数据为基础,建立与实验室加速腐蚀的关联性。从电子轨道理论角度理解材料属性与腐蚀环境关键因素之间的化学键合作用和配位吸附能力的关系,从而揭示腐蚀机制,最终创建耐蚀材料设计新理论,建立腐蚀加速谱与寿命预测模型,制定腐蚀标准、规范,服务于国民经济和国防建设。研究成果在文昌卫星发射基地塔架腐蚀监测与耐候钢选材、三峡水电站转轮叶片点蚀行为与稀土夹杂物改性、高放射性核废物地质处置寿命预测与选材等领域得到了应用。先后主持国家重点研发计划子课题、中科院重点部署课题、基础加强计划项目课题、中国科学院青年创新促进会项目、国家自然科学基金等项目。发表SCI论文30余篇,授权专利6项,起草团体标准1项。入选中国科学院青年创新促进会会员、中国腐蚀与防护学会装备健康智能诊断专委会委员、中国腐蚀与防护学报青年编委、沈阳市拔尖人才。获得2022年度中国腐蚀与防护学会科技进步一等奖(自然科学类)。2023年获得中国腐蚀与防护学会杰出青年成就奖。

摘要

通过对碳钢和不锈钢紧固件在海洋环境中的腐蚀特征、腐蚀产物和电偶极化等内容的比较性研究,提出了两种不同的腐蚀机制。对于碳钢紧固件,锈层增加了额外的IR降,削弱了阴极区对阳极缝隙区的极化作用,供氧的差异导致螺纹曝露部位的腐蚀更为严重,腐蚀形式以均匀腐蚀为主。对于不锈钢紧固件,缺氧的环境导致螺纹缝隙部位的钝化膜性能劣化,螺杆曝露区对螺纹缝隙区的电偶极化作用促使缝隙区腐蚀更为严重,腐蚀形式以点蚀为主。针对碳钢和不锈钢紧固件在海洋环境中的不同腐蚀机制,提出了差异化的腐蚀防护技术思路。

关键词: 螺栓紧固件 ; 碳钢 ; 不锈钢 ; 电偶腐蚀 ; 缝隙腐蚀

Abstract

Through a comparative study of the corrosion characteristics, corrosion products, and electrochemical polarization of carbon steel- and stainless steel-bolt fasteners in a Cl- containing NaCl solution, which aims to simulate offshore atmospheric environment. For carbon steel fasteners, the occurrence of rust scale can induce an extra IR drop, weakened the polarization effect of the cathodic area to the anodic crevice area, and the difference in oxygen supply led to more severe corrosion in the exposed thread area, mainly uniform corrosion. For stainless steel fasteners, the lack of oxygen in the environment led to the degradation of the passivation film performance in the thread crevice area, and the polarization effect of the exposed screw area to the thread crevice area, thus resulted in more severe corrosion in the crevice area, mainly pitting corrosion. Differentiated corrosion protection strategies were proposed for carbon steel and stainless steel fasteners in marine environments based on their distinct corrosion mechanisms.

Keywords: bolt fastener ; carbon steel ; stainless steel ; galvanic corrosion ; crevice corrosion

PDF (4183KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究. 中国腐蚀与防护学报[J], 2023, 43(4): 737-745 DOI:10.11902/1005.4537.2023.151

WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(4): 737-745 DOI:10.11902/1005.4537.2023.151

钢制螺栓紧固件具有优异的机械性能和较低的成本,被广泛应用于塔架、桥梁、海洋平台和压力容器等设备零部件的连接中[1,2]。尽管它们具有诸多优点,但由于服役场景的复杂性和严酷性,其应用也存在诸多安全隐患。除了螺栓结构的疲劳、应力开裂和其他类型的应力机械故障外,腐蚀是降低其承载能力并危及结构完整性的又一大关键因素,特别是在如海水和海岸大气等含盐量较高的恶劣环境中,螺栓的腐蚀问题更为严重[3]。近年来,许多与螺栓紧固件腐蚀相关的故障和事故被相继报道,例如汽车事故、起重机故障、桥梁、建筑和平台崩塌、石油和天然气管道泄漏等。由于螺杆和螺母的耦接部位不可避免地存在缝隙,可以导致接触区域内外的传质过程受到限制,从而在离子浓度上产生显著的差异,并导致缝隙内部电解质缺氧等后果[4,5]。此外,螺杆和螺母的耦接将紧固件结构分为阳极区和阴极区两部分。曝露于大气环境并拥有充足O2供应的区域作为阴极区,而O2扩散较为困难的闭塞部位作为阳极区。具有供氧差异的螺纹表面不同区域之间会形成腐蚀原电池,它将影响腐蚀产物的性质、腐蚀模式和腐蚀动力学等,如果不加控制,则可能导致螺栓紧固件的突然失效,从而威胁整个结构体系。

用于制备钢制紧固件的主要材料通常为碳钢和不锈钢两种。碳钢属于活性金属,腐蚀速率较快,且在其表面通常生长出一定厚度的锈层。尽管碳钢对缝隙腐蚀有一定的抵抗力,但仍然容易受到其他形式的腐蚀攻击。例如在诸如土壤、大气和深海等环境中,都有碳钢紧固件腐蚀的相关报道,其腐蚀受到金属表面状态、溶液组分、pH、温度、CO2含量、残余应力和电偶作用等多种因素的影响[6~8]。不锈钢属于钝性金属,其表面自生一种纳米级的钝化膜,使其具有良好的耐蚀性[9]。然而,在Cl-存在的情况下,缝隙腐蚀是影响不锈钢紧固件的主要问题。Cl-会改变钝化膜的结构、形态和保护性,从而影响不锈钢的腐蚀热力学与动力学[10~12]。Muzghi等[13]在对曝露于阿拉伯湾海洋大气环境中的不同材质紧固件的一项失效分析研究中指出,碳钢螺栓均匀腐蚀减薄量较大,腐蚀极为严重,而不锈钢螺栓发生了点蚀、缝隙腐蚀和严重的应力腐蚀开裂等局部腐蚀。Elshawesh等[3]研究表明,在含盐、CO2和H2S的侵蚀性服役环境中,多级水泵的碳钢螺栓发生严重的电偶腐蚀和缝隙腐蚀,致使其在螺杆-螺母接触的螺纹区域发生开裂。Aziz等[14]研究了完整尺寸碳钢螺栓长期曝露于侵蚀性环境中的服役行为,表明点蚀和缝隙腐蚀是该环境中的主要腐蚀类型。Yang等[15]对曝露于海洋和工业大气环境中的1Cr17Ni2高强度螺栓的腐蚀行为进行了研究,表明γ-FeOOH和α-FeOOH是螺栓表面锈层的主要成分。Shah等[16]研究了螺栓扭矩和腐蚀对螺栓紧固件结构机械行为的作用,表明扭矩和腐蚀的交互作用是影响螺栓接头的腐蚀行为和承载能力的另一个主要因素。

以往对螺栓紧固件腐蚀的研究通常集中在环境、机械和冶金等因素的相互作用上[15,17,18]。关于螺栓紧固件的电偶行为与缝隙腐蚀耦合作用的研究较少。尤其是针对于钢制紧固件上具有两种不同电化学属性区域间的耦合腐蚀机制尚缺少清晰的认识,这对评估钢制紧固件服役寿命、开发耐蚀螺栓是至关重要的基础。近年来,本研究团队针对碳钢和不锈钢两种材质紧固件进行了系统的腐蚀机制研究,揭示了紧固件的几何设计尺寸、腐蚀产物和阴/阳极区域面积等是影响紧固件腐蚀动力学规律的主要因素,同时阐明了碳钢和不锈钢两种不同材质紧固件在腐蚀机制上的本质性差异,为机械设备连接选材与服役寿命评估提供了重要的依据[19~21]。本文将从腐蚀行为、腐蚀产物、电偶腐蚀和腐蚀机制等4个方面分别进行阐述。

1 螺栓紧固件腐蚀模拟装置的搭建

为了研究碳钢和不锈钢紧固件腐蚀机制的差异,在实验室搭建了螺栓紧固件结构腐蚀模拟装置,如图1所示。螺栓紧固件曝露螺纹区域的腐蚀行为可通过“曝露区域”样品进行模拟,与螺母接触的螺纹区域的腐蚀行为可通过“接触区域”样品进行模拟。为了模拟螺杆和螺母通过电连接产生的电偶腐蚀行为,将“曝露区域”样品与“接触区域”样品通过零阻电流计进行耦接,并可测试其电偶电流。螺杆和螺母组装模型的剖面如图1a所示。图1b所示为电化学模拟装置,其中,区域A和B分别表示为“曝露区域”和“接触区域”。两个电极的表面积均为2.0 cm2。采用厚度为350 μm的聚四氟乙烯垫片作为缝隙形成器。Ag/AgCl电极和Pt片分别用作参比电极和辅助电极[19]

图1

图1   螺栓紧固件组件的示意图[19]

Fig.1   Schematic diagram of bolt fastener assembly[19]: (a) bolt fastener, (b) experimental model of electrochemical device assembled with simulated screw and nut


2 缝隙腐蚀行为的差异

螺栓紧固件螺母和螺杆的接触区域形成了闭塞的缝隙结构,缝隙内外之间传质过程极其困难,因此二者之间将存在较大的水化学成分和电位的差异,这也是缝隙腐蚀发生的根本原因。关于缝隙腐蚀机制的观点很多,例如亚稳态点蚀机制 (Metastable pitting mechanism)、临界缝隙溶液机制 (Critical crevice solution mechanism)和IR降机制 (IR drop mechanism) 等等[10~12]。由于碳钢和不锈钢两种材料的电化学性质存在着本质性的差异,因此两种紧固件制品的缝隙腐蚀行为表现出了截然相反的特征。

图2所示为C45碳钢螺栓紧固件在0.06 mol/L NaCl溶液中浸泡28 d前后的宏观腐蚀形貌。图2ab为浸泡前紧固件的外观形貌,可见金属光泽[19]图2c为浸泡28 d后紧固件整体的腐蚀形貌,可见所有裸露部位均有明显的锈蚀迹象,均匀腐蚀形态明显。由图2d可见,在螺栓部件的表面可观察到明显的差异,在螺母-螺杆缝隙接触区域,仍然肉眼可见金属光泽,腐蚀极为轻微。对于曝露在溶液中的区域,视觉可观察深色的腐蚀产物。缝隙内部形成的腐蚀产物较少。

图2

图2   C45碳钢螺栓紧固件在0.06 mol/L NaCl溶液中浸泡28 d前后的宏观形貌图[19]

Fig.2   Macroscopic images of C45 carbon steel bolt and nut assembly before immersion (a, b) and after 28 d of immersion in 0.06 mol/L NaCl solution (c-f): (a) coupled bolt with nut, (b) uncoupled bolt, (c) coupled bolt with nut, (d) uncoupled bolt, (e) region A exposed to the bulk solution, (f) region B (bolt and nut contact) [19]


图3可以看出,腐蚀前后304不锈钢螺栓紧固件的形貌差异。由图3b可见,在腐蚀实验后,曝露的螺栓螺纹尖部呈现出轻微腐蚀的痕迹,但该区域并未检测到明显的点蚀。然而,由图3c可见,在缝隙部位 (螺杆-螺母接触区),腐蚀现象十分严重,在螺纹尖端、侧面和根部均有较为明显的点蚀迹象。可见,缝隙内外的腐蚀差异性明显,缝隙腐蚀程度严重[20]

图3

图3   304不锈钢螺栓紧固件在腐蚀前后的表面形貌图 [20]

Fig.3   Surface morphologies of the 304 stainless steel threaded specimen[20]: (a) as-received specimen, (b) exposed region after corrosion test, (c) crevice region after corrosion test, (d) enlarged view of the crevice region, (e) sampled area at the flank, (f) sampled area at the root


由以上分析可知,碳钢紧固件的曝露部位腐蚀严重,缝隙内部腐蚀轻微,腐蚀形式以均匀腐蚀为主。不锈钢紧固件曝露部位腐蚀轻微,而缝隙部位腐蚀严重,腐蚀形式以点蚀为主。可见,两种材料紧固件的腐蚀存在着腐蚀机制上的差别,需要从腐蚀产物和电偶极化机制上寻找本质原因。

3 腐蚀产物的差异

碳钢和不锈钢分别属于活性金属和钝性金属,在腐蚀产物组分上存在着较大的差别。碳钢的腐蚀产物通常为较厚的锈层,锈层的存在可以为体系提供额外的IR降,从而影响紧固件体系的腐蚀。由图4可见,C45碳钢紧固件曝露区域的锈层厚度为60 μm左右,接触区锈层的厚度为15 μm左右。曝露区域表面的锈层可以分为较为疏松的外锈层和相对致密的内锈层,而接触区域只有相对致密的内锈层。通过比较两个区域锈层厚度可以发现,曝露区域中形成的腐蚀产物明显多于接触区域。图5所示为C45碳钢紧固件曝露区域和接触区域表面形成的腐蚀产物的相组成。由图可见,C45碳钢螺栓紧固件表面腐蚀产物的主要相组成为β-FeOOH、α-FeOOH、γ-FeOOH和Fe3O4。从XRD谱可知,曝露区域形成的腐蚀产物与接触区域有所不同[21]。在图5a中,曝露区域的腐蚀产物相中最突出的峰值对应于γ-FeOOH。同时,也检测到了β-FeOOH、α-FeOOH和Fe3O4的衍射峰。环境中Cl-的存在有利于β-FeOOH的形成。相比于γ-FeOOH和β-FeOOH,Fe3O4α-FeOOH更具有热力学稳定性[22]。由图5b可见,在接触区域腐蚀产物相组成中,Fe3O4β-FeOOH的衍射峰较强,同时,也可以检测到较弱的α-FeOOH和γ-FeOOH的衍射峰。在Fe2+和Cl-含量较高的环境中,β-FeOOH更容易生成并稳定存在,接触区域中较低的O含量更有利于Fe3O4的形成[20~24]

图4

图4   C45碳钢紧固件曝露区域和接触区域表面锈层截面形貌以及Fe和O分布图[21]

Fig.4   Cross-section mapping of Fe and O distribution in the rust layer formed on the metal-oxide interface at the exposed and crevice regions of planar fasteners, respectively [21]


图5

图5   C45碳钢紧固件曝露区域和接触区域表面形成的腐蚀产物的XRD谱[21]

Fig.5   XRD patterns for the corrosion products formed on the fastener surfaces at the exposed region (a) and contact region (b), respectively (A=akaganeite; G=goethite; L=lepidocrocite; M=magnetite; H=halite) [21]


不锈钢表面的腐蚀产物通常为几纳米厚的钝化膜。图67分别展现了304不锈钢紧固件曝露区域表面和接触区域表面的XPS光谱结果和钝化膜结构示意图[20]。可以看出,紧固件曝露区域的304不锈钢钝化膜较厚,根据半定量的估算,其厚度约为4.3 nm。钝化膜中金属离子含量和O含量相对较高,具有较好的保护性。然而,紧固件缝隙内部的钝化膜较薄,其厚度仅为2.6 nm,金属离子含量较低。同时,接触区域钝化膜中Cl-含量较高,这将导致钝化膜中产生大量的缺陷。相对于曝露区域,接触区域钝化膜的厚度和保护性显著降低,这与接触区域闭塞的几何形状所导致的低的O2含量和高的Cl-含量有直接关系。

图6

图6   304不锈钢紧固件在不同溅射时间下曝露区域表面和接触区域表面获得的XPS谱[20]

Fig.6   XPS spectra obtained at the exposed surface and crevice surface as a function of sputtering times [20]: (a) Fe 2p, (b) Cr 2p, (c) Ni 2p, (d) O 1s, (e) Cl 2p


图7

图7   304不锈钢紧固件表面钝化膜中不同元素含量随深度变化的XPS深度剖析图及对应的钝化膜模型[20]

Fig.7   XPS depth profile showing the percentage element content of the oxide film formed on the surfaces of 304 stainless steel after 30 d of immersion in the test media as a function of depth (nm) [20]: (a) exposed surface, (b) crevice surface


通过腐蚀产物对比分析可以看出,对于碳钢和不锈钢两种材质的螺栓紧固件来说,曝露区域腐蚀产物的厚度和保护性能均优于接触区域。由于缺少O2的供应,不锈钢紧固件接触区的钝化膜极薄,对基体几乎起不到保护作用。碳钢紧固件曝露区域和接触区域的锈层具有一定的厚度,可以进一步阻挡传质过程,并为结构引入额外的IR降,这也是两种紧固件腐蚀产物最重要的差别。

4 电偶极化作用的差异

紧固件特殊的几何结构将螺栓曝露区域 (O2供应充足) 和接触区域 (O2供应不足) 分为了阴极区和阳极区。阴极区表面发生的氧还原过程会对阳极区起到一定的电偶极化作用,这将是螺栓腐蚀失效的一个加速步骤。

图8显示为在零阻电流计联通的模式下,C45碳钢螺栓紧固件曝露区域和接触区域的电偶电流密度随浸泡时间的变化趋势[19]。由图可见,在浸泡初期,两个电极无锈层覆盖,电偶电流密度较大。随着浸泡时间的延长,金属表面锈层不断累积,对基体起到一定的保护作用[22]。此外,曝露区域电极表面有60 μm厚的锈层覆盖,该锈层可显著地减小缝隙口的缝隙宽度并增大电解质的传质阻力,从而增大IR降。因此,曝露区域对接触区域的电偶极化电势将有很大一部分被锈层产生的IR降所消耗。随着锈层的增厚,IR降不断增大,曝露区域对接触区域的电偶极化作用在逐渐减弱。在浸泡后期,电偶电流密度不断减小,而且减小的趋势仍在持续。

图8

图8   在曝露区域和接触区域电连接耦合的模式电偶电流密度随时间的变化[19]

Fig.8   Time-dependent plots of galvanic current density observed in the mode of electrical connection between exposed area and contact area [19]


图9a所示为在零阻电流计联通的模式下,304不锈钢螺栓紧固件曝露区域和接触区域的电偶电流密度随浸泡时间的变化趋势[20]。在浸泡初期 (5 d以内),电偶电流密度大幅度地增大,表明曝露区域电极对接触区域电极的电偶极化作用在不断地增强。在浸泡初期,曝露区域和接触区域表面的钝化膜不完善,二者电位差异较小,电偶极化作用较弱。随着腐蚀时间的延长,由于氧供应充分,曝露区域的钝化膜不断完善,保护性能逐渐变强。由于缺少O2的供应,接触区域的钝化膜保护能力较差,并且随着缝隙内部不断地酸化,钝化膜性质愈发劣化。随着曝露区域和接触区域的电位差不断地变大,电偶极化作用也相应地增强。另外,与碳钢紧固件接触区域不同,不锈钢表面没有较厚的锈层产生过多的IR降,因此,不锈钢螺栓阴/阳极区域之间的电偶极化作用没有额外的消耗,一直处于较强的状态。由图9b可见,接触区域304不锈钢的维钝能力和点蚀电位均下降,这与接触区域表面钝化膜性质变差,更易诱发点蚀直接相关。

图9

图9   曝露区域和接触区域的电偶电流密度随时间的变化曲线和极化曲线[20]

Fig.9   Average current density vs time profile of the crevice/exposed galvanic couple (a) and polarization curves (b) [20]


图10为两种材质螺栓紧固件的阴/阳极区域面积比 (Sc/Sa) 对电偶电流密度的影响[19]。由图可见,不论是碳钢还是不锈钢螺栓紧固件,增大曝露区域面积均会增加结构对接触区域的极化作用。因此,在海洋环境中尽量减小钢结构材料与螺栓紧固件的阴/阳极面积比,或者进行有效的绝缘处理十分必要。

图10

图10   阴阳极区域面积比 (Sc/Sa) 对螺栓紧固件电偶电流密度的影响 [19]

Fig.10   Galvanic current density of the bolt/nut couple as a function of area ratio (Sc/Sa) [19]: (a) C45 carbon steel, (b) 304 stainless steel


5 腐蚀机制的差异

通过以上分析可知,不论是碳钢还是不锈钢紧固件,在耦合情况下,宏观上都存在阳极区域与阴极区域之间的分离。螺纹的接触区域主要发生阳极过程,螺纹的曝露区域发生阴极过程。在这两个区域之间的氧浓差极化的作用下,二者之间存在电偶电流。

图11示意性地描述了碳钢螺栓紧固件在含Cl-环境中,曝露区域和接触区域表面形成的腐蚀产物以及不同阶段的反应机理[21]。对于碳钢紧固件系统,曝露区域都被较厚的锈层覆盖,额外产生的IR降消耗掉了绝大部分的电偶极化作用。因此,电偶电流随着腐蚀时间的推移而减小,接触区域的腐蚀逐渐减缓。曝露区域氧供应充足,虽然生成的较厚锈层对其向钢基体的扩散传质起到很大的阻滞作用,但锈层的主要成分 (β, γ)-FeOOH也具有很强的阴极去极化能力,使其腐蚀持续进行,腐蚀形式为均匀腐蚀。因此,碳钢螺栓紧固件的防护措施应以保护曝露部位为主,发展高性能耐候钢螺栓紧固件是解决该问题的有效手段。

图11

图11   碳钢紧固件腐蚀进程与腐蚀机理示意图[21]

Fig.11   Schematic diagram of corrosion process and corrosion mechanism of carbon steel fasteners [21]


图12示意性地描述了304不锈钢紧固件在含Cl-环境中,曝露区域和接触区域表面形成的钝化膜以及涉及到的各种反应过程。对于304不锈钢螺栓紧固件系统,材料表面为几纳米厚的钝化膜,无额外的IR降消耗电偶极化作用。在曝露区域,由于供氧充分,表面钝化膜结构完整且稳定,构成腐蚀的阴极性区域;而接触区域则因为缺氧而成为阳极性区域。因此,在两部分区域之间的电偶电流持续作用于接触区域。由于接触区域狭窄的缝隙结构阻碍了传质过程,因此,该区域内的阳极溶解产物金属阳离子不断地聚集。为了维持电中性,更多的Cl-迁移到缝隙中,进一步的水解导致缝隙内溶液的酸化,从而形成自催化效应,破坏钝化膜的保护性,加速缝隙内部的腐蚀,腐蚀形式以点蚀为主。因此,其防护措施应以阻断缝隙口传质为主,发展强钝性的紧固件材料或开发螺纹密封包覆技术是解决该问题的有效手段。

图12

图12   304不锈钢紧固件的腐蚀进程与腐蚀机理示意图[20]

Fig.12   Schematic illustration of the proposed mechanism of corrosion in 304 stainless steel fasteners at coupled conditions (a), isolated conditions (b) and time-dependent evolution (c) of 304 stainless steel fastener corrosion process [20]


6 结论与展望

(1) 在含Cl-的海洋腐蚀环境中,碳钢和不锈钢紧固件表现出截然相反的腐蚀特征,碳钢紧固件的曝露部位腐蚀严重,缝隙内部腐蚀轻微,腐蚀形式以均匀腐蚀为主。不锈钢紧固件的曝露部位腐蚀轻微,而缝隙部位腐蚀严重,腐蚀形式以点蚀为主。

(2) 碳钢紧固件的曝露区域和接触区域表面锈层的厚度分别为60和15 μm,腐蚀产物的相组成均为β-FeOOH、α-FeOOH、γ-FeOOH和Fe3O4。不锈钢紧固件表面覆盖有纳米级的钝化膜,曝露区域的钝化膜较厚且具保护性。接触区域的钝化膜极薄,金属离子含量较低,保护性极差。

(3) 对于碳钢紧固件,由于接触区域表面覆盖的锈层产生了额外的IR降,紧固件阴极区对阳极区的极化作用被大幅度削弱。因此,表现出接触区域腐蚀较轻的腐蚀现象。对于不锈钢紧固件,阴极区域对阳极区域的电偶极化作用随着阴、阳极区域电位差的增大而不断地增强。因此,表现出接触区域点蚀更为严重的腐蚀特征。

(4) 碳钢螺栓紧固件的腐蚀防护措施应以保护曝露部位为主,例如发展高性能耐候钢螺栓。不锈钢螺栓紧固件的腐蚀防护措施应以阻断缝隙口传质为主,例如发展强钝性的紧固件材料或开发螺纹接触区密封包覆技术等。

参考文献

Hosoya N, Niikura T, Hashimura S, et al.

Axial force measurement of the bolt/nut assemblies based on the bending mode shape frequency of the protruding thread part using ultrasonic modal analysis

[J]. Measurement, 2020, 162: 107914

DOI      URL     [本文引用: 1]

Revie R W, Uhlig H H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering [M]. 4th ed. Hoboken: John Wiley & Sons Inc, 2008

[本文引用: 1]

Elshawesh F, Abusowa K, Mahfud H, et al.

Stress-corrosion cracking and galvanic corrosion of internal bolts from a multistage water injection pump

[J]. J. Fail. Anal. Prev., 2008, 8: 48

DOI      URL     [本文引用: 2]

Hagarová M, Jakubéczyová D, Baranová G, et al.

Determination of bimetallic corrosion risk using an electrochemical method

[J]. Mater. Sci. Forum, 2019, 960: 62

DOI      URL     [本文引用: 1]

McCafferty E.

Electrochemical behavior of iron within crevices in nearly neutral chloride solutions

[J]. J. Electrochem. Soc., 1974, 121: 1007

DOI      URL     [本文引用: 1]

Al-sherrawi M H, Lyashenko V, Edaan E M, et al.

Corrosion of metal construction structures

[J]. Int. J. Civ. Eng. Technol., 2018, 9: 437

[本文引用: 1]

Meikle T, Tadolini S C, Sainsbury B A, et al.

Laboratory and field testing of bolting systems subjected to highly corrosive environments

[J]. Int. J. Min. Sci. Technol., 2017, 27: 101

DOI      URL    

Radouani R, Echcharqy Y, Essahli M.

Numerical simulation of galvanic corrosion between carbon steel and low alloy steel in a bolted joint

[J]. Int. J. Corros., 2017: 6174904

[本文引用: 1]

Rees E E, McPhail D S, Ryan M P, et al.

Low energy SIMS characterisation of ultra thin oxides on ferrous alloys

[J]. Appl. Surf. Sci., 2003, 203/204: 660

[本文引用: 1]

Niu L B, Okano K, Izumi S, et al.

Effect of chloride and sulfate ions on crevice corrosion behavior of low-pressure steam turbine materials

[J]. Corros. Sci., 2018, 132: 284

DOI      URL     [本文引用: 2]

Ma Y T, Li Y, Wang F H.

Corrosion of low carbon steel in atmospheric environments of different chloride content

[J]. Corros. Sci., 2009, 51: 997

DOI      URL    

Udoh I I, Shi H W, Liu F C, et al.

Synergistic effect of 3-amino-1,2,4-triazole-5-thiol and cerium chloride on corrosion inhibition of AA2024-T3

[J]. J. Electrochem. Soc., 2019, 166: C185

DOI      URL     [本文引用: 2]

Muzghi I A.

Fastener corrosion in Arabian Gulf offshore installations

[A]. EUROCORR 2004: Long Term Prediction and Modeling of Corrosion [C]. Nice, 2004: 1

[本文引用: 1]

Aziz N, Craig P, Nemcik J, et al.

Rock bolt corrosion-an experimental study

[J]. Min. Technol., 2014, 123: 69

DOI      URL     [本文引用: 1]

Yang X K, Zhang L W, Zhang S Y, et al.

Atmospheric corrosion behaviour and degradation of high-strength bolt in marine and industrial atmosphere environments

[J]. Int. J. Electrochem. Sci., 2021, 16: 151015

DOI      URL     [本文引用: 2]

Shah J K, Braga H B F, Mukherjee A, et al.

Ultrasonic monitoring of corroding bolted joints

[J]. Eng. Failure Anal., 2019, 102: 7

DOI      URL     [本文引用: 1]

Gedge G.

Structural uses of stainless steel-buildings and civil engineering

[J]. J. Constr. Steel Res., 2008, 64: 1194

DOI      URL     [本文引用: 1]

Li X G, Zhang D W, Liu Z, et al.

Materials science: share corrosion data

[J]. Nature, 2015, 527: 441

DOI      [本文引用: 1]

Daniel E F, Dong J H, Li X F, et al.

Corrosion behaviour of carbon steel fasteners in neutral chloride solution

[J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 563

DOI      [本文引用: 13]

Daniel E F, Wang C G, Li C, et al.

Synergistic effect of crevice corrosion and galvanic coupling on 304SS fasteners degradation in chloride environments

[J]. npj Mater. Degrad., 2023, 7: 11

DOI      [本文引用: 14]

The synergistic effect of crevice corrosion and galvanic coupling on the degradation of 304 stainless steel fasteners exposed to a chloride environment was investigated using electrochemical and surface analysis techniques. Results obtained revealed that the crevice region of the fastener showed lower corrosion resistance due to decreased surface passivation induced by the crevice geometry and low oxygen conditions, while the exposed region with a higher oxygen supply exhibited improved corrosion resistance. Coupling of the exposed and crevice regions of the fastener demonstrated accelerated corrosion attributable to galvanic effect. The driving force for the galvanic effect on the fastener was linked to three (3) key factors: (I) the potential difference established between the different regions on the fastener surface due to uneven oxygen distribution, (II) the difference in the solution environment, and (III) the difference in surface properties (active-passive surface). Morphological studies showed localised corrosion occurring mainly in the crevice.

Daniel E F, Li C, Wang C G, et al.

Insights into the characteristics of corrosion products formed on the contact and exposed regions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments

[J]. J. Mater. Sci. Technol., 2023, 135: 250

DOI      [本文引用: 9]

This study investigated the characteristics of corrosion products formed on the contact and exposed regions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments. The corroded surface morphology, rust compositions, and corrosion kinetics of the bolt specimen were studied by visual observation, optical microscopy (OM), scanning electron microscopy (SEM), X-Ray diffractometry (XRD), micro-Raman, electron probe micro-analyser (EPMA), and potentiodynamic polarization techniques. Results obtained showed a variation in corrosion kinetics, morphology, and composition of the rust layer which were driven by differential aeration and concentration effects. Due to the availability of sufficient dissolved oxygen, the oxyhydroxide compound, lepidocrocite (&#x003b3;-FeOOH) was detected in the outer rust layer in the exposed region, whereas the inner rust layer was composed of magnetite (Fe<sub>3</sub>O<sub>4</sub>). However, the oxygen-deficient contact surface revealed the presence of akaganeite (&#x000df;-FeOOH) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) as dominant oxide phases. The most stable phase, goethite (&#x003b1;-FeOOH) was also detected in the rust formed in both regions, though in significantly low amounts. Furthermore, owing to variation in environmental conditions, the amount and density of the rust layer varied in the different regions. The estimated corrosion stability values for the different regions revealed that the corrosion products formed on the steel surfaces were non-protective, suggesting the need for specific surface treatment as a protective measure.

Shi L J, Yang X Y, Song Y W, et al.

Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel

[J]. J. Mater. Sci. Technol., 2019, 35: 1886

DOI      [本文引用: 2]

Galvanic corrosion of tri-metallic couples is more complicated than that of bi-metallic couples. In this study, the effect of the pH of corrosive media on the galvanic corrosion of 2024 Al alloy/Q235 mild steel/304 stainless steel tri-metallic couples was investigated using potentiodynamic polarization, scanning electron microscopy, scanning vibrating electrode technique and a multi-channel galvanic corrosion meter. The results show that 2024 always acts as the only anode in 3.5 wt% NaCl at pH 5.56, 9.72 and 12.0, while both Q235 and 2024 act as anodes at pH 2.39 in the initial stage and then the role of Q235 changes at longer coupling time, which can be attributed to the effect of pH on the surface film of 2024. It is also found that the galvanic current density of a tri-metallic couple is the superposition of two bi-metallic couples when cathodic reactions are controlled by the diffusion of oxygen, otherwise it is smaller than that of the sum of two bi-metallic couples. The localized corrosion instead of uniform corrosion of anodic metal is accelerated by galvanic corrosion.

Veneranda M, Aramendia J, Bellot-Gurlet L, et al.

FTIR spectroscopic semi-quantification of iron phases: a new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems

[J]. Corros. Sci., 2018, 133: 68

DOI      URL    

Refait P, Grolleau A M, Jeannin M, et al.

Corrosion of mild steel at the seawater/sediments interface: mechanisms and kinetics

[J]. Corros. Sci., 2018, 130: 76

DOI      URL     [本文引用: 1]

/