Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1319-1328     CSTR: 32134.14.1005.4537.2022.398      DOI: 10.11902/1005.4537.2022.398
  研究报告 本期目录 | 过刊浏览 |
珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究
张凯丽1, 都俐俐1, 谭军2, 刘祥周2, 马骥1, 邱萍1()
1.中国石油大学 (北京) 新能源与材料学院 北京 102249
2.中国石油天然气股份有限公司长庆油田分公司第三采气厂 鄂尔多斯 017300
Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology
ZHANG Kaili1, DU Lili1, TAN Jun2, LIU Xiangzhou2, MA Ji1, QIU Ping1()
1.College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
2.The Third Gas Production Plant, PetroChina Changqing Oilfield Company, Ordos 017300, China
引用本文:

张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
Kaili ZHANG, Lili DU, Jun TAN, Xiangzhou LIU, Ji MA, Ping QIU. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1319-1328.

全文: PDF(17241 KB)   HTML
摘要: 

利用水油两相法制备了具有多孔珊瑚簇状形貌的SiO2,通过与丙烯酸聚氨酯树脂共混喷涂的方法构造多孔微纳结构,探究不同SiO2含量基底层形貌对表面二甲基硅油的贮存能力的影响,分析了所制备超滑涂层的耐机械磨损性、防污着自清洁性以及防腐特性。结果表明,随着珊瑚簇状SiO2含量的增加,基底粗糙度增加且使得无序的基底形貌分布更均匀,更有利于提高硅油层的稳定性。其中,SiO2与树脂质量比为25%的涂层 (标记为SiO2-25) 的滑动角只有5.4°,并经过磨损测试后涂层仍具有优异的疏液性能和防污着自清洁性。由于填料对基底孔隙结构的影响,在经过3.5%NaCl溶液浸泡腐蚀20 d后,SiO2-25的|Z|0.01 Hz仍高达6.62×109 Ω·cm2。在长期的腐蚀防护中,SiO2-25在所测试涂层中对碳钢具有最优异防腐蚀性能。

关键词 超滑涂层SiO2耐机械磨损防腐Q235    
Abstract

The work aims to improve the stability and mechanical wear resistance of the lubricating layer of the slippery coating, which are the key problems to be solved for long-term service of the coating. The SiO2 with coral cluster morphology was prepared by water-oil two-phase method, and then porous micro-nanostructures were constructed by mixing SiO2 with acrylic polyurethane resin and spraying. Meanwhile the influence of substrate morphology with different SiO2 content on the storage capacity of dimethyl silicone oil of the coating surface was studied. The mechanical abrasion resistance, self-cleaning and anti-corrosion properties of the slippery coatings were also assessed. The results showed that with the increased of SiO2 content, the roughness of the substrate increased, and the disordered substrate morphology was more uniform, which was more conducive to improving the stability of the silicon oil layer. The sliding angle of SiO2-25 was 5.4°. And the SiO2-25 even had excellent lyophobicity and self-cleaning property after wear test. Due to the influence of fillers on the pore structure of the coating, the |Z|0.01 Hz of SiO2-25 was still as high as 6.62×109 Ω·cm2 after 20 d of immersion in 3.5%NaCl solution, higher than SiO2-30. Among others, the coating of SiO2-25 has the best corrosion resistance for carbon steel for the long-term.

Key wordsslippery coating    SiO2    mechanical abrasion resistance    anti-corrosion    Q235
收稿日期: 2022-12-15      32134.14.1005.4537.2022.398
ZTFLH:  TG174  
基金资助:国家自然科学基金(52071335);国家自然科学基金(2462020YXZZ016);中国石油大学 (北京) 基金(2462015YQ0602)
通讯作者: 邱萍,E-mail: qiuping@cup.edu.cn,研究方向为腐蚀与防护
Corresponding author: QIU Ping, E-mail: qiuping@cup.edu.cn
作者简介: 张凯丽,女,1993年生,博士生
图1  超滑涂层制备流程图
图2  多孔珊瑚簇状SiO2和SiO2含量不同的中间态涂层表面形貌及其硅油液滴的静态接触角
图3  SiO2含量不同的中间态涂层的激光共聚焦扫描形貌图
图4  不同超滑涂层表面光学图像及静态接触角
CategoryBefore silicone oil injectionAfter silicone oil injection
SiO2-20SiO2-25SiO2-30SiO2-20SiO2-25SiO2-30
Contact angle115.9°133.4°134.4°100.6°101.3°101.6°
Sliding angle>90°>90°>90°7.9°5.4°3.7°
表1  涂层在注入硅油前后的表面静态接触角和滑动角
图5  不同磨损周期超滑涂层质量损耗对比图
Coating0-10 cycles10-20 cycles20-30 cycles30-40 cycles
SiO2-201.440.850.660.34
SiO2-251.071.160.510.23
SiO2-300.841.210.480.25
表2  不同磨损周期超滑涂层的质量损失增量 (mg·cm-2)
图6  不同周期磨损后超滑涂层静态接触角和滑动角对比图
图7  膨润土溶液和土壤溶液在3种超滑涂层上的滑动测试
图8  磨损前后超滑涂层表面咖啡液滴滑动过程
图9  各涂层电化学阻抗Bode图及低频模值 (|Z|0.01 Hz) 对比图
图10  SiO2-25中间态涂层和SiO2-25超滑涂层的电化学阻抗Bode图
图11  盐雾实验后涂层表面腐蚀形貌
CoatingCoating categoryCorrosion test conditions

Result comparison

|Z|0.01 Hz / Ω·cm2

SiO2-25slippery coating3.5%NaCl solution immersion0 d20 d
3.22×10116.62×109
KCC-1/PVDF[12]Superhydrophobic coating1 d14 d
4.9×1081.13×108
KCC-1/PVDF-SLIPS[12]slippery coating1 d14 d
1.31×10101.02×109
LDH-PFDS[24]Superhydrophobic coating7 d
8.36×106
LDH-PFDS-SLIPS[24]slippery coating7 d
1.34×107
PDMS-SiO2/PANI[25]Superhydrophobic coating1 h8 d
~109~108
TMES-modifified SiO2 matrix coating[26]Superhydrophobic coating0 d5 d
表3  不同种类超滑涂层的耐蚀性能对比
1 Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
2 Liu M M, Hou Y Y, Li J, et al. Transparent slippery liquid-infused nanoparticulate coatings [J]. Chem. Eng. J., 2018, 337: 462
doi: 10.1016/j.cej.2017.12.118
3 Zhang H, Wang P, Zhang D. Designing a transparent organogel layer with self-repairing property for the inhibition of marine biofouling [J]. Colloids Surf., 2018, 538A: 140
4 Tuo Y J, Zhang H F, Chen W P, et al. Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil [J]. Appl. Surf. Sci., 2017, 423: 365
doi: 10.1016/j.apsusc.2017.06.170
5 Liu X L, Chen H W, Zhao Z H, et al. Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications [J]. Surf. Coat. Technol., 2019, 374: 889
doi: 10.1016/j.surfcoat.2019.06.077
6 Manna U, Raman N, Welsh M A, et al. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach [J]. Adv. Funct. Mater., 2016, 26: 3599
doi: 10.1002/adfm.201505522 pmid: 28713229
7 Gulfam R, Orejon D, Choi C H, et al. Phase-change slippery liquid-infused porous surfaces with thermo-responsive wetting and shedding states [J]. ACS Appl. Mater. Interfaces, 2020, 12: 34306
doi: 10.1021/acsami.0c06441
8 Xiang T F, Zheng S L, Zhang M, et al. Bioinspired slippery zinc phosphate coating for sustainable corrosion protection [J]. ACS Sustainable Chem. Eng., 2018, 6: 10960
doi: 10.1021/acssuschemeng.8b02345
9 Han X M, Dou W W, Chen S G, et al. Stable slippery coating with structure of tubes and pyramids for inhibition of corrosion induced by microbes and seawater [J]. Surf. Coat. Technol., 2020, 388: 125596
doi: 10.1016/j.surfcoat.2020.125596
10 Vogel N, Belisle R A, Hatton B, et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers [J]. Nat. Commun., 2013, 4: 2176
doi: 10.1038/ncomms3176
11 Kim P, Kreder M J, Alvarenga J, et al. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates [J]. Nano Lett., 2013, 13: 1793
doi: 10.1021/nl4003969 pmid: 23464578
12 Cao J Y, Zhnag H Y, Yang W J, et al. Preparation and properties of KCC-1/PVDF superhydrophobic and ultra-slip surfaces [J]. Surf. Technol., 2020, 49(6): 152
12 曹京宜, 张海永, 杨文静 等. KCC-1/PVDF超疏水与超滑表面的制备及其性能研究 [J]. 表面技术, 2020, 49(6): 152
13 Zhang M L, Yu J, Chen R R, et al. Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances [J]. J. Alloy. Compd., 2019, 803: 51
doi: 10.1016/j.jallcom.2019.06.241
14 Zhang F M, Zeng Z X, Wang G, et al. Fabrication and anti-corrosion performance of superhydrophobic surface film on Q235 steel substrate [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 617
14 张方铭, 曾志翔, 王 刚 等. Q235钢超疏水表面制备及耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 617
doi: 10.11902/1005.4537.2016.182
15 Qiu Z H, Qiu R, Xiao Y M, et al. Slippery liquid-infused porous surface fabricated on CuZn: a barrier to abiotic seawater corrosion and microbiologically induced corrosion [J]. Appl. Surf. Sci., 2018, 457: 468
doi: 10.1016/j.apsusc.2018.06.139
16 Song F, Wu C Q, Chen H L, et al. Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces [J]. RSC Adv., 2017, 7: 44239
doi: 10.1039/C7RA04816E
17 Nie X H, Du C W, Li X G. Influence of temperature on the corrosion behavior and mechanism of Q235 steel in Dagang soil [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 48
17 聂向晖, 杜翠薇, 李晓刚. 温度对Q235钢在大港土中腐蚀行为和机理的影响 [J]. 北京科技大学学报, 2009, 31: 48
18 Chen T C, Xiang J H, Jiang L F, et al. High-temperature corrosion behavior of Q235 steel in oxidizing atmosphere containing chlorine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 560
18 陈土春, 向军淮, 江龙发 等. Q235钢在氧化性含Cl气氛中的高温腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 560
doi: 10.11902/1005.4537.2020.129
19 Ouyang Y B, Cao Q, Li B Z, et al. Nanofluid-infused slippery surface: bioinspired coating on Zn with high corrosion inhibition performance [J]. Colloids Surf., 2021, 608A: 125492
20 Xie J, Hu J, Lin X D, et al. Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles [J]. Appl. Surf. Sci., 2018, 457: 870
doi: 10.1016/j.apsusc.2018.06.250
21 Deng R, Shen T, Chen H L, et al. Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion? [J]. J. Mater. Chem., 2020, 8A: 7536
22 Xing K, Li Z X, Wang Z R, et al. Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys [J]. Chem. Eng. J., 2021, 418: 129079
doi: 10.1016/j.cej.2021.129079
23 Zhao S R, Shen T, Li Y T, et al. Epoxy-resin-based slippery liquid infused anti-icing coating based on breath figure [J]. Acta Polym. Sin., 2021, 52: 1622
23 赵书瑞, 申 婷, 李玉堂 等. 基于呼吸图法的环氧树脂基超滑液体灌注防冰涂层 [J]. 高分子学报, 2021, 52: 1622
24 Yao W H, Chen Y H, Wu L, et al. Preparation of slippery liquid-infused porous surface based on MgAlLa-layered double hydroxide for effective corrosion protection on AZ31 Mg alloy [J]. J. Taiwan Inst. Chem. Eng., 2022, 131: 104176
doi: 10.1016/j.jtice.2021.104176
25 Yang P G, Zheng Y, Peng R C, et al. Fabrication and corrosion resistance of superhydrophobic PDMS-SiO2/PANI coating on A3 steel [J]. Mater. Prot., 2018, 51(5): 12
25 杨品高, 郑 玉, 彭瑞超 等. A3碳钢表面PDMS-SiO2/PANI超疏水膜的制备及其防腐蚀性能 [J]. 材料保护, 2018, 51(5): 12
26 Tong W, Xiong D S, Zhou H J. TMES-modified SiO2 matrix non-fluorinated superhydrophobic coating for long-term corrosion resistance of aluminium alloy [J]. Ceram. Int., 2020, 46: 1211
doi: 10.1016/j.ceramint.2019.08.251
[1] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[4] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[5] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[6] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[7] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[8] 连衍成, 梁富源, 贺建超, 李瑨, 武俊伟, 冷雪松. 超疏水聚四氟乙烯材料制备工艺的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[9] 于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
[10] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[11] 类延华, 刘宁轩, 张玉良, 常雪婷, 刘涛. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[12] 胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[13] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[14] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[15] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.