中国腐蚀与防护学报, 2023, 43(6): 1319-1328 DOI: 10.11902/1005.4537.2022.398

研究报告

珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究

张凯丽1, 都俐俐1, 谭军2, 刘祥周2, 马骥1, 邱萍,1

1.中国石油大学 (北京) 新能源与材料学院 北京 102249

2.中国石油天然气股份有限公司长庆油田分公司第三采气厂 鄂尔多斯 017300

Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology

ZHANG Kaili1, DU Lili1, TAN Jun2, LIU Xiangzhou2, MA Ji1, QIU Ping,1

1.College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China

2.The Third Gas Production Plant, PetroChina Changqing Oilfield Company, Ordos 017300, China

通讯作者: 邱萍,E-mail:qiuping@cup.edu.cn,研究方向为腐蚀与防护

收稿日期: 2022-12-15   修回日期: 2023-02-08  

基金资助: 国家自然科学基金.  52071335
国家自然科学基金.  2462020YXZZ016
中国石油大学 (北京) 基金.  2462015YQ0602

Corresponding authors: QIU Ping, E-mail:qiuping@cup.edu.cn

Received: 2022-12-15   Revised: 2023-02-08  

Fund supported: National Natural Science Foundation of China.  52071335
National Natural Science Foundation of China.  2462020YXZZ016
Funding of China University of Petroleum (Beijing).  2462015YQ0602

作者简介 About authors

张凯丽,女,1993年生,博士生

摘要

利用水油两相法制备了具有多孔珊瑚簇状形貌的SiO2,通过与丙烯酸聚氨酯树脂共混喷涂的方法构造多孔微纳结构,探究不同SiO2含量基底层形貌对表面二甲基硅油的贮存能力的影响,分析了所制备超滑涂层的耐机械磨损性、防污着自清洁性以及防腐特性。结果表明,随着珊瑚簇状SiO2含量的增加,基底粗糙度增加且使得无序的基底形貌分布更均匀,更有利于提高硅油层的稳定性。其中,SiO2与树脂质量比为25%的涂层 (标记为SiO2-25) 的滑动角只有5.4°,并经过磨损测试后涂层仍具有优异的疏液性能和防污着自清洁性。由于填料对基底孔隙结构的影响,在经过3.5%NaCl溶液浸泡腐蚀20 d后,SiO2-25的|Z|0.01 Hz仍高达6.62×109 Ω·cm2。在长期的腐蚀防护中,SiO2-25在所测试涂层中对碳钢具有最优异防腐蚀性能。

关键词: 超滑涂层 ; SiO2 ; 耐机械磨损 ; 防腐 ; Q235

Abstract

The work aims to improve the stability and mechanical wear resistance of the lubricating layer of the slippery coating, which are the key problems to be solved for long-term service of the coating. The SiO2 with coral cluster morphology was prepared by water-oil two-phase method, and then porous micro-nanostructures were constructed by mixing SiO2 with acrylic polyurethane resin and spraying. Meanwhile the influence of substrate morphology with different SiO2 content on the storage capacity of dimethyl silicone oil of the coating surface was studied. The mechanical abrasion resistance, self-cleaning and anti-corrosion properties of the slippery coatings were also assessed. The results showed that with the increased of SiO2 content, the roughness of the substrate increased, and the disordered substrate morphology was more uniform, which was more conducive to improving the stability of the silicon oil layer. The sliding angle of SiO2-25 was 5.4°. And the SiO2-25 even had excellent lyophobicity and self-cleaning property after wear test. Due to the influence of fillers on the pore structure of the coating, the |Z|0.01 Hz of SiO2-25 was still as high as 6.62×109 Ω·cm2 after 20 d of immersion in 3.5%NaCl solution, higher than SiO2-30. Among others, the coating of SiO2-25 has the best corrosion resistance for carbon steel for the long-term.

Keywords: slippery coating ; SiO2 ; mechanical abrasion resistance ; anti-corrosion ; Q235

PDF (17241KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究. 中国腐蚀与防护学报[J], 2023, 43(6): 1319-1328 DOI:10.11902/1005.4537.2022.398

ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(6): 1319-1328 DOI:10.11902/1005.4537.2022.398

2011年,Aizenberg课题组[1]通过仿生猪笼草瓶状叶在边缘分泌光滑液体来捕食昆虫的原理,第一次提出了注入润滑液体的多孔超滑表面 (SLIPS)。与亚稳态的超疏水表面 (气-液-固体系统) 不同,超滑表面的润滑剂层取代了超疏水表面的气垫,形成液-液接触界面,使涂层具有泛疏性[2]。科学家们利用超滑表面的性质,制备了具有防腐蚀性能[3, 4],防覆冰[5]、防海洋生物附着[6]等功能性超滑涂层。在其表面受到损伤时,由于润滑剂的流动性可自发地恢复结构的完整性,所以超滑涂层具有良好的功能自修复性能[7]。但这种流动性也导致润滑剂层易于损失[8, 9]。大部分超滑涂层通过表面微纳米孔洞或沟壑结构锁住润滑液,只有提高涂层固锁润滑剂的能力且得到均匀的润滑剂层才能保证超滑涂层的性能稳定性,这仍是解决超滑涂层应用问题的重点。Vogel等[10]通过模板法制备纳米多孔表面结构以研究不同粗糙度基底表面对润滑剂稳定性的影响,对于辛烷作为测试液和杜邦100全氟聚醚润滑油作为润滑剂,支持稳定滑移的阈值为实际表面积与平面的表面积的比值R>1.51±0.1。而不同尺度的表面微结构和层级状态对表面保持润滑剂稳定能力也具有不同的影响,具有均匀纳米特征的表面润滑剂稳定性更好[11]。这些研究都是基于有序结构阈值的探索,而对于无序的基底结构,有研究通过改变填料的形貌,构造多孔隙的结构可有效提高表面润滑剂的稳定性。例如,曹京宜等[12]利用海胆状纳米SiO2微球和聚偏氟乙烯制备超滑涂层,研究表明SiO2微球的介孔褶皱结构有利于硅油的浸入储存,使涂层具有较好的耐磨性和对镁合金长期的防腐性能。Zhang等[13]通过制备管状SiO2构造堆叠孔复合结构,这种结构锁定润滑油能力优于光滑球状结构表面,并通过毛细管作用实现了涂层性能的自愈。

在超疏水表面上腐蚀性溶液的浸润性减小,从而提高了涂层的防腐蚀性能[14]。相较于超疏水表面,超滑涂层不但具有同样的趋避腐蚀性液体的能力,其表面的润滑层更有效的抵挡了水的侵入,所以建立稳定的润滑层可以延长涂层对水和腐蚀介质的屏蔽时效性[4, 12, 15, 16]。Q235钢由于价格低廉,具有较好的塑性、韧性以及焊接性,是用途最广的低碳结构钢[17, 18]。其服役环境更为复杂,制备性能优异的防腐涂层才能应对多种腐蚀环境。

但通过电沉积、水热法和蚀刻等方法[15, 16, 19]在金属表面构造粗糙微纳表面以制备超滑防腐涂层,不利于大型工件工程的施工建造,限制了超滑防腐涂层在Q235钢上的应用。所以本文采用二甲基硅油作为润滑剂,通过简易喷涂的方法制备了多孔珊瑚簇状的SiO2/丙烯酸聚氨酯复合超滑涂层,提高涂层的应用前景。通过构造不同含量多孔珊瑚簇状SiO2的基底形貌,深入探究其对超滑涂层性能的影响;并探究不同基底条件下构筑的复合超滑涂层对碳钢的腐蚀防护能力,进而寻求耐机械磨损、性能稳定、防腐效果更好的超滑涂层。

1 实验方法

采用Q235钢 (50 mm×75 mm×3 mm) 和玻璃片作为基板,钢板用150#与400#砂纸依次打磨,并用丙酮和乙醇溶液清洗去除表面油脂。所用的化学物质包括羟基丙烯酸树脂、固化剂 (N75 MPA/X)、二甲基硅油 (100 cSt)、SiO2纳米颗粒 (粒径15±5 nm)、乙醇、丙酮、氨水、正硅酸四乙酯、十六烷基三甲基溴化铵 (CTAB)、尿素、异丙醇 (IPA)、环己烷 (CYH)。所有试剂无需进一步纯化。将0.25 g SiO2、0.5 g CTAB和0.3 g尿素加入到15 mL去离子水中超声分散均匀,后再加入0.5 mL IPA,在50 ℃水浴环境下搅拌得到溶液A。向A中缓慢滴加5 mL正硅酸四乙酯和15 mL CYH的混合溶液,升温至70 ℃继续搅拌11 h。离心取白色沉淀并用无水乙醇洗涤2~3次,真空干燥。最后将产物在550 ℃下煅烧4 h,研磨后备用。

取比例为25∶8的羟基丙烯酸树脂和N75,添加适量乙酸丁酯进行稀释。分别按树脂质量的20%、25%和30%加入制备的SiO2。首先在基底喷涂一层纯丙烯酸聚氨酯树脂,常温固化24 h后再喷涂第二层含填料的树脂,固化后得到预制超滑涂层的基底层。最终干膜厚度为 (50±5) μm。将制备好的涂层放入二甲基硅油中,置于真空环境中10 min后取出,垂直放置以通过重力驱动排除多余的润滑剂,制备流程如图1所示。得到的超滑涂层根据SiO2添加的质量比分别记为SiO2-20、SiO2-25和SiO2-30。

图1

图1   超滑涂层制备流程图

Fig.1   Flow chart for preparation of super-lubricative coating


采用FEI Quanta 200 F扫描电镜 (SEM)、Olympus OLS4100激光扫描共聚焦显微镜 (CLSM) 和OLYMPUS DSX510光学显微镜检测涂层表面形貌和表面粗糙度。接触角和滑动角的测量采用液滴体积为5 μL的固着液滴测量方法。耐机械磨损能力采用常压约为20 kPa的摩擦循环实验进行测试,测试标准高于超疏水表面耐磨实验 (10 kPa)[20]。样品在400#砂纸上以恒压线性移动,磨损后测量接触角,以表征表面润湿性的变化。并测量磨损后涂层表面的质量损失。通过电化学阻抗谱 (EIS) 测量评价涂层的防腐性能。采用三电极体系,以铂丝电极为辅助电极,饱和甘汞电极为参比电极,涂敷涂层的试样为工作电极,测试溶液为3.5% (质量分数) NaCl溶液。分别将试样在3.5%NaCl溶液中浸泡腐蚀0、5、10和20 d后进行测试,频率范围在105~10-2 Hz,扰动电压为10 mV。0 d的测试是将涂层在溶液中浸泡稳定30 min后进行。通过盐雾实验来对涂层的长期耐腐蚀性能进行监控,在中性盐雾环境中腐蚀500 h后,比较涂层变化和对钢材的保护性能。

2 结果与讨论

2.1 表面形貌及润湿性分析

通过SEM分析研究了水油两相法制备的SiO2的形貌,以及不同SiO2含量构造的涂层基底层形貌,测试结果如图2所示。同时,分析了相应涂层基底的静态接触角。图2a是SiO2的微观形貌,颗粒尺寸约在50 nm左右,且呈现团聚态多孔珊瑚簇状。可见,珊瑚簇状的SiO2具有高的比表面积,其自身多孔的结构有利于构造多孔隙的基底表面。图2b~d分别是超滑涂层SiO2-20、SiO2-25和SiO2-30的基底层微观形貌,SiO2 喷涂后形成高度无序的类珊瑚礁形貌。随SiO2含量的增加,基底层的孔隙尺寸减小,孔洞深度提高,SiO2聚集构成的微米级结构上同时分布着大量的纳米微孔。涂层基底层的静态接触角测试结果显示,接触角随SiO2含量的增加而增加,其中SiO2-20和SiO2-30的接触角相近。为探究润湿角变化原因,通过激光共聚焦进一步分析了涂层基底层的粗糙度。图3是不同SiO2含量涂层基底层的激光共聚焦扫描形貌图,SiO2-20、SiO2-25和SiO2-30的基底层粗糙度分别为4.393、5.176和7.522 μm。显然,SiO2含量的增加提高了基底层的粗糙度。通过图3的3D扫描图可以清晰的看出,随着SiO2含量的增加,基底孔隙分布更为均匀,这也导致高含量SiO2构造的基底具有更高的静态接触角。

图2

图2   多孔珊瑚簇状SiO2和SiO2含量不同的中间态涂层表面形貌及其硅油液滴的静态接触角

Fig.2   SEM morphologies of porous coral clustered SiO2 (a) and intermediate coatings containing 20% (b), 25% (c) and 30% (d) SiO2, the insets show static contact angles of simethicone drop


图3

图3   SiO2含量不同的中间态涂层的激光共聚焦扫描形貌图

Fig.3   Laser scanning images and 3D surface structures of intermediate coatings containing 20% (a, d), 25% (b, e) and 30% (c, f) SiO2


当浸注硅油后,SiO2-20、SiO2-25和SiO2-30 3种超滑涂层表面光学图像及其对应的静态接触角如图4所示。可以看出,SiO2-20涂层表面硅油未平整铺满基底层 (图4a),随着SiO2含量的增加,硅油层平整度逐渐提高,说明基底层的粗糙度影响了表面硅油的铺展。硅油层的表面状态直接影响着涂层的润湿性能。表1展示了涂层浸注硅油前后表面浸润性的变化,基底层具有较高的静态接触角,并随着SiO2含量的增加而增大,SiO2-25和SiO2-30基底层的静态接触角分别为133.4°和134.4°,达到了超疏水表面静态接触角数值,但所有的基底层动态接触角均大于90°,具有高粘附性;而浸注硅油后,SiO2-20、SiO2-25和SiO2-30的静态接触角分别为100.6°、101.3°和101.6°,滑动角分别为7.9°、5.4°和3.7°。SiO2-20、SiO2-25和SiO2-30的静态接触角值相近,这是因为润滑油填充到微纳结构中,液滴与涂层表面的液-气界面变成了液-液界面,涂层的表面润湿性都表现为表层硅油的性能。虽然3种超滑涂层的静态接触角相较于基底层减小,但是硅油的注入使得涂层都具有了较小的滑动角,改变了基底的粘附性。由于基底层的粗糙度影响表面硅油的铺展,其中,SiO2-30表面SiO2构成的空腔孔洞小且均匀,这使得硅油铺展后润滑剂层较其它超滑涂层更均匀平整,如图4c。所以SiO2-30的滑动角只有3.7°,SiO2-25次之,滑动角为5.4°,SiO2-25和SiO2-30都展现出优异的疏液滑动性能。

图4

图4   不同超滑涂层表面光学图像及静态接触角

Fig.4   Optical images and static contact angles of SiO2-20 (a), SiO2-25 (b), and SiO2-30 (c) super-lubricative coatings


表1   涂层在注入硅油前后的表面静态接触角和滑动角

Table 1  Static contact angles and sliding angles of the coatings before and after silicone oil injection

CategoryBefore silicone oil injectionAfter silicone oil injection
SiO2-20SiO2-25SiO2-30SiO2-20SiO2-25SiO2-30
Contact angle115.9°133.4°134.4°100.6°101.3°101.6°
Sliding angle>90°>90°>90°7.9°5.4°3.7°

新窗口打开| 下载CSV


根据上述呈现规律进行分析可知,基底层上SiO2构造的微纳结构可以使液滴悬挂在其表面,此时表面处于亚稳态的Cassie状态。虽然一定的粗糙度使得微纳结构可以截留一部分空气,提高涂层表面的静态接触角值,但由于在丙烯酸聚氨酯的高表面能和微米级结构的共同作用下提高了钉扎效应,使水滴在试样垂直放立时也不具有滚动能力,3种基底层动态接触角均大于90° (表1)。而大多数报道的超滑涂层都是基于疏水或超疏水底物制备的[21],这种具有高粘附性的超疏水涂层表面具有好的亲油性,更有利于硅油在涂层表面可以快速铺展,基底层上不规则的类珊瑚形状锁住润滑油,使得润滑剂不易流失,同时一定的粗糙度影响了表面硅油层铺展后的平整度,空腔孔洞小且均匀的微纳结构更利于得到均匀平整的硅油层,从而提高超滑涂层的表面驱液性能。

2.2 耐机械磨损性能

图5为10、20、30和40次磨损周期后超滑涂层质量损耗的对比图。各个磨损周期后,SiO2-20的质量损失量均为最高,SiO2-30呈现最小的质量损失,SiO2-25次之。这说明了SiO2-30和SiO2-25的基底形貌有利于减小涂层中硅油的损失,SiO2-30和SiO2-25在机械磨损条件下都具有良好的驻润滑油能力,SiO2-20的性能最差。图5中阴影面积表示以10次磨损周期为计数单位时各涂层的质量损失量,即涂层在该计数单位下的质量损失增量,具体数值如表2所示。可以看出,前20次磨损后各涂层的质量损失增量大于磨损后期,其中SiO2-30和SiO2-25在磨损后期的质量损失增量明显低于SiO2-20。这是由于涂层在未磨损破坏前表面有一定厚度的硅油层,磨损前期砂纸带走了表面大部分的硅油,导致前20次磨损具有较大的质量损失增量;当表面硅油层损失后,贮存在基底形貌中的硅油得到了来自SiO2形貌抵抗磨损的保护,所以后期硅油的损失增量减小,SiO2-30和SiO2-25在磨损后期小于SiO2-20的损失增量也说明前二者的基底形貌具有更好的耐机械磨损能力,从而使基底层中硅油不易损失。

图5

图5   不同磨损周期超滑涂层质量损耗对比图

Fig.5   Comparison of the mass losses of three super-lubricative coatings after abrasion for different cycles


表2   不同磨损周期超滑涂层的质量损失增量 (mg·cm-2)

Table 2  Mass loss increments of three super-lubricative coatings after abrasion for different cycles

Coating0-10 cycles10-20 cycles20-30 cycles30-40 cycles
SiO2-201.440.850.660.34
SiO2-251.071.160.510.23
SiO2-300.841.210.480.25

新窗口打开| 下载CSV


表面润滑层是保证超滑涂层良好性能的关键[22]。良好的驻润滑油能力保证了涂层在受到机械磨损后表面润滑层可以及时修复,从而保证涂层性能的稳定性。图6展示了经过不同磨损周期后超滑涂层表面润湿性变化的对比图。如图6a所示,磨损后3种超滑涂层仍有较高的静态接触角,且静态接触角数值相对稳定。SiO2-20随着磨损周期的增加滑动角具有较大的增加幅度,如图6b,磨损40次后增加至21.1°。而SiO2-25和SiO2-30随着磨损周期的增加,滑动角变化较小,在磨损40次周期后SiO2-25的滑动角为10°,SiO2-30的滑动角为8.9°。由于SiO2-25和SiO2-30具有较粗糙均匀的表面,提升了涂层的驻润滑油能力,这使得涂层在表面油层磨损损失后及时向上层补充硅油,更能抵御涂层疏液性能的磨损失效,从而使涂层具有较稳定的静态接触角和较低的液体滑动角,所以SiO2-25和SiO2-30展现出良好的润滑层抗机械磨损的稳定性,其中SiO2-30性能最优异。

图6

图6   不同周期磨损后超滑涂层静态接触角和滑动角对比图

Fig.6   Comparison of the static contact angles (a) and sliding angles (b) of three super-lubricative coatings after abrasion for different cycles


2.3 防污着自清洁性能

自然环境下液体中含有多种杂质,在涂层表面的长时间附着也会增加溶液中腐蚀介质的侵入,所以超滑涂层的防污着自清洁性能不但可以保证涂层外观的完整性,也可保证性能的长效性。超滑涂层中润滑液体的低表面能使其可以趋避大多数液体,包括很多易于污着的液体能够快速在其表面滚落且不存在拖尾残留现象[23]。因此,本文通过使用膨润土溶液、土壤溶液和咖啡对涂层的防污着自清洁性能进行了分析。其中,膨润土溶液和土壤溶液在涂层表面的滑动实验结果如图7所示,两种测试溶液均可以在3种超滑涂层表面滑动且无污着残留,可见3种超滑涂层均具有防污着自清洁性能。

图7

图7   膨润土溶液和土壤溶液在3种超滑涂层上的滑动测试

Fig.7   Sliding tests of bentonite solution (a) and soil solution (b) on three super-lubricative coatings


为表征这种防污着自清洁性能的稳定性,利用咖啡作为测试液体,对比了涂层磨损前后相同时间内咖啡的滑动长度,测试结果如图8所示。磨损前 (图8a),3种涂层表面测试液体的滑动能力相差不大;经过40个磨损周期后 (图8b),咖啡液滴在SiO2-20表面的滑动减缓,其中SiO2-25和SiO2-30表面咖啡滑动速度虽有轻微减小但不影响表面测试液体的滑动。虽然涂层表面仍未出现污着残留现象,但滑动能力的下降不利于及时排除表面液体,增大了测试液体滞留的可能。结果表明SiO2-25和SiO2-30涂层较SiO2-20具有优异稳定的防污着自清洁性能。

图8

图8   磨损前后超滑涂层表面咖啡液滴滑动过程

Fig.8   Sliding process of coffee drops on three super-lubricative coatings before (a) and after (b) abrasion for 40 cycles


2.4 防腐蚀性能

图9显示了各涂层在3.5%NaCl溶液中浸泡0、5、10和20 d后的EIS结果。根据图9中各涂层的Bode图可以看出,3种超滑涂层在刚开始浸泡时各涂层的模值近乎一条直线,相角在低频处仍有较高值,说明此时涂层处于浸泡初期,对溶液中的腐蚀离子具有优异的屏蔽性能。随着浸泡时间的增加,溶液中的离子逐渐侵入涂层,导致涂层模值逐渐负移,相位角曲线逐渐下降。

图9

图9   各涂层电化学阻抗Bode图及低频模值 (|Z|0.01 Hz) 对比图

Fig.9   Bode plots of SiO2-20 (a), SiO2-25 (b), and SiO2-30 (c) super-lubricative coatings and comparison diagram of |Z|0.01 Hz values (d)


通常采用低频下的阻抗模量 (|Z|0.01 Hz) 来评价保护涂层的耐腐蚀性,|Z|0.01 Hz值较高的涂层具有较好的抗腐蚀性能[7]。对各涂层的低频模值 (|Z|0.01 Hz) 取对数后作对比图,如图9d所示,可以观察到SiO2-20、SiO2-25和SiO2-30在浸泡刚开始的|Z|0.01 Hz都较高,SiO2-30的低频模值为3.65×1011 Ω·cm2,SiO2-25为3.22×1011 Ω·cm2,SiO2-25为2.81×1011 Ω·cm2。这是由于除了有机涂层自身的阻隔性能,涂层表面的硅油层不与水相溶,硅油在取代基底层的空气后再次起到隔绝的作用,有效地阻挡腐蚀性物质的侵入,从而表现出良好的屏蔽效果。其中,SiO2-30具有孔隙均匀且粗糙度大的表面,这使得硅油在其表面均匀铺展,其具有最厚且均匀的硅油层,所以SiO2-30的|Z|0.01 Hz值最高。

但外层硅油层的阻隔性能主要在浸泡腐蚀的前期作用明显,当电解质溶液透过硅油层后,涂层的阻隔性能主要取决于底层的有机涂层。所以由于基底形貌对硅油层的影响,在浸泡5 d后,硅油层最厚且均匀的SiO2-30仍具有最高的|Z|0.01 Hz值,SiO2-20的|Z|0.01 Hz值下降最快。但浸泡10 d后SiO2-30的|Z|0.01 Hz值下降明显,为1.33×109 Ω·cm2,低于SiO2-25的1.09×1010 Ω·cm2。这是由于在浸泡腐蚀的后期,涂层中SiO2的填量影响了有机涂层的阻隔性能,随着SiO2填量的增加,会导致基底纵向的孔隙结构增加,虽然这有利于贮存更多的硅油,但涂层结构中孔隙也会导致电解质溶液的进入,降低涂层的防腐蚀性能。所以当电解质溶液透过硅油层后,粗糙度较低的SiO2-25的阻隔性能优于SiO2-30,在浸泡腐蚀20 d后,SiO2-25的|Z|0.01 Hz仍高达6.62×109 Ω·cm2,SiO2-30的|Z|0.01 Hz为5.88×108 Ω·cm2,即在浸泡腐蚀的后期,SiO2-25展现出更优异的防腐蚀性能。SiO2-20的|Z|0.01 Hz值始终低于SiO2-25和SiO2-30,所以相较于其它涂层SiO2-20的防腐蚀能力较差。

通过上述分析可知SiO2-25具有最好的防腐性能,但是根据表1所示,各个涂层在注入硅油前都具有较高的静态接触角,其中SiO2-25基底层达到超疏水表面的静态接触角数值,而注入硅油之后涂层的静态接触角下降。由于超疏水表面增强了对腐蚀性介质的趋避作用,使其同样具有提高涂层防腐性能的能力。故有必要探究比较涂层超疏水基底层和超滑涂层的防腐性能。图10给出了SiO2-25基底超疏水层和注入硅油后的超滑涂层在3.5%NaCl溶液中浸泡腐蚀不同天数后的EIS测试结果。如图所示,SiO2-25基底层虽具有较高的|Z|0.01 Hz值,但腐蚀前后均低于SiO2-25超滑涂层大约2个数量级,说明硅油层对腐蚀介质的阻隔性能在提高涂层的防腐蚀性能中具有重要作用。

图10

图10   SiO2-25中间态涂层和SiO2-25超滑涂层的电化学阻抗Bode图

Fig.10   Bode plots of SiO2-25 intermediate coating and its super-lubricative coating after immersion in 3.5%NaCl solution for 0 d (a) and 20 d (b)


盐雾实验是评价涂层的防腐蚀作用的有效手段。本研究开展了500 h的近中性盐雾实验,各涂层样品腐蚀形貌宏观照片如图11所示。SiO2-20、SiO2-25和SiO2-30 3种涂层均未出现变色、鼓泡等涂层失效行为,但都出现少量的腐蚀点。其中,SiO2-20和SiO2-30涂层腐蚀区域分布大于SiO2-25。

图11

图11   盐雾实验后涂层表面腐蚀形貌

Fig.11   Corrosion morphologies of three super-lubricative coatings after salt spray test: (a) SiO2-20, (b) SiO2-25, (c) SiO2-30


综合以上EIS和盐雾实验结果分析,在长期的腐蚀防护中,SiO2-25具有最优异的防腐蚀性能。

同时,为了说明SiO2-25超滑涂层的优异防腐蚀性能,将其与其他研究中的超滑防腐涂层以及使用SiO2构造的超疏水防腐涂层相比,结果如表3。其中,根据KCC-1/PVDF[12]和KCC-1/PVDF[24]超疏水/超滑涂层的数据对比,在超疏水表面灌注润滑剂制备的超滑涂层,其|Z|0.01 Hz值在腐蚀前后始终高出超疏水基底涂层1~2个数量级,说明润滑层的注入提高了涂层的防腐蚀能力。而SiO2-25在最长时间的腐蚀浸泡下相较于其他涂层仍具有最大的低频阻抗值,说明其具有更高的碳钢防腐性能。

表3   不同种类超滑涂层的耐蚀性能对比

Table 3  Comparison of corrosion resistance of different kinds of slippery/superhydrophobic coatings

CoatingCoating categoryCorrosion test conditions

Result comparison

|Z|0.01 Hz / Ω·cm2

SiO2-25slippery coating3.5%NaCl solution immersion0 d20 d
3.22×10116.62×109
KCC-1/PVDF[12]Superhydrophobic coating1 d14 d
4.9×1081.13×108
KCC-1/PVDF-SLIPS[12]slippery coating1 d14 d
1.31×10101.02×109
LDH-PFDS[24]Superhydrophobic coating7 d
8.36×106
LDH-PFDS-SLIPS[24]slippery coating7 d
1.34×107
PDMS-SiO2/PANI[25]Superhydrophobic coating1 h8 d
~109~108
TMES-modifified SiO2 matrix coating[26]Superhydrophobic coating0 d5 d

新窗口打开| 下载CSV


3 结论

本研究利用水油两相法制备了多孔珊瑚簇状的SiO2,通过调整SiO2在丙烯酸聚氨酯的含量构造不同粗糙度的基底,再注入硅油制备了具有耐久性和优异防腐性能的超滑涂层。研究结果表明,随着涂层中SiO2含量的增加,基底粗糙度增加且使得无序的基底形貌分布更均匀,这利于表面硅油层的铺展,从而提高超滑涂层的性能和抗机械磨损稳定性。SiO2-30的滑动角只有3.7°,SiO2-25为5.4°。经过40次磨损实验后,SiO2-30的滑动角为8.9°,SiO2-25为10°,两涂层仍具有良好的疏液性能和防污着自清洁性能。同时,超滑涂层的硅油层增加了涂层对腐蚀介质的阻隔,在经过3.5%NaCl溶液浸泡腐蚀20 d后,SiO2-25的|Z|0.01 Hz仍高达6.62×109 Ω·cm2,中性盐雾腐蚀500 h后样品表面仍无明显腐蚀。这表明均匀铺展的硅油层提高了涂层的防腐蚀能力,但同时基底纵向上孔隙的分布影响了涂层的阻隔性能,所以在长期的腐蚀防护中,SiO2-25具有最好的腐蚀性能。这对超滑涂层在碳钢防腐领域的应用研究具有重要意义。

参考文献

Wong T S, Kang S H, Tang S K Y, et al.

Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity

[J]. Nature, 2011, 477: 443

DOI      [本文引用: 1]

Liu M M, Hou Y Y, Li J, et al.

Transparent slippery liquid-infused nanoparticulate coatings

[J]. Chem. Eng. J., 2018, 337: 462

DOI      URL     [本文引用: 1]

Zhang H, Wang P, Zhang D.

Designing a transparent organogel layer with self-repairing property for the inhibition of marine biofouling

[J]. Colloids Surf., 2018, 538A: 140

[本文引用: 1]

Tuo Y J, Zhang H F, Chen W P, et al.

Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil

[J]. Appl. Surf. Sci., 2017, 423: 365

DOI      URL     [本文引用: 2]

Liu X L, Chen H W, Zhao Z H, et al.

Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications

[J]. Surf. Coat. Technol., 2019, 374: 889

DOI      URL     [本文引用: 1]

Manna U, Raman N, Welsh M A, et al.

Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach

[J]. Adv. Funct. Mater., 2016, 26: 3599

DOI      PMID      [本文引用: 1]

Many types of slippery liquid-infused porous surfaces (or 'SLIPS') can resist adhesion and colonization by microorganisms. These 'slippery' materials thus offer new approaches to prevent fouling on a range of commercial and industrial surfaces, including biomedical devices. However, while SLIPS can prevent fouling on surfaces to which they are applied, they can currently do little to prevent the proliferation of non-adherent (planktonic) organisms, stop them from colonizing other surfaces, or prevent them from engaging in other behaviors that could lead to infection and associated burdens. Here, we report an approach to the design of multi-functional SLIPS that addresses these issues and expands the potential utility of slippery surfaces in antimicrobial contexts. Our approach is based on the incorporation and controlled release of small-molecule antimicrobial agents from the porous matrices used to host infused slippery oil phases. We demonstrate that SLIPS fabricated using nanoporous polymer multilayers can prevent short- and longer-term colonization and biofilm formation by four common fungal and bacterial pathogens (,, and ), and that the polymer and oil phases comprising these materials can be exploited to load and sustain the release of triclosan, a model hydrophobic and broad-spectrum antimicrobial agent, into surrounding media. This approach both improves the inherent anti-fouling properties of these materials and endows them with the ability to efficiently kill planktonic pathogens. Finally, we show that this approach can be used to fabricate dual-action SLIPS on complex surfaces, including the luminal surfaces of flexible catheter tubes. This strategy has the potential to be general; we anticipate that the materials, strategies, and concepts reported here will enable new approaches to the design of slippery surfaces with improved anti-fouling properties and open the door to new applications of slippery liquid-infused materials that host or promote the release of a variety of other active agents.

Gulfam R, Orejon D, Choi C H, et al.

Phase-change slippery liquid-infused porous surfaces with thermo-responsive wetting and shedding states

[J]. ACS Appl. Mater. Interfaces, 2020, 12: 34306

DOI      URL     [本文引用: 2]

Xiang T F, Zheng S L, Zhang M, et al.

Bioinspired slippery zinc phosphate coating for sustainable corrosion protection

[J]. ACS Sustainable Chem. Eng., 2018, 6: 10960

DOI      URL     [本文引用: 1]

Han X M, Dou W W, Chen S G, et al.

Stable slippery coating with structure of tubes and pyramids for inhibition of corrosion induced by microbes and seawater

[J]. Surf. Coat. Technol., 2020, 388: 125596

DOI      URL     [本文引用: 1]

Vogel N, Belisle R A, Hatton B, et al.

Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

[J]. Nat. Commun., 2013, 4: 2176

DOI      [本文引用: 1]

Kim P, Kreder M J, Alvarenga J, et al.

Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates

[J]. Nano Lett., 2013, 13: 1793

DOI      PMID      [本文引用: 1]

Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties under application-relevant conditions. By comparing the lubricant loss, contact angle hysteresis, and sliding angles for water and ethanol droplets on flat, microscale, nanoscale, and hierarchically textured surfaces subjected to various spinning rates (from 100 to 10,000 rpm), we show that lubricant-infused textured surfaces with uniform nanofeatures provide the most shear-tolerant liquid-repellent behavior, unlike lotus leaf-inspired superhydrophobic surfaces, which generally favor hierarchical structures for improved pressure stability and low contact angle hysteresis. On the basis of these findings, we present generalized, low-cost, and scalable methods to manufacture uniform or regionally patterned nanotextured coatings on arbitrary materials and complex shapes. After functionalization and lubrication, these coatings show robust, shear-tolerant omniphobic behavior, transparency, and nonfouling properties against highly contaminating media.

Cao J Y, Zhnag H Y, Yang W J, et al.

Preparation and properties of KCC-1/PVDF superhydrophobic and ultra-slip surfaces

[J]. Surf. Technol., 2020, 49(6): 152

[本文引用: 5]

曹京宜, 张海永, 杨文静 .

KCC-1/PVDF超疏水与超滑表面的制备及其性能研究

[J]. 表面技术, 2020, 49(6): 152

[本文引用: 5]

Zhang M L, Yu J, Chen R R, et al.

Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances

[J]. J. Alloy. Compd., 2019, 803: 51

DOI      URL     [本文引用: 1]

Zhang F M, Zeng Z X, Wang G, et al.

Fabrication and anti-corrosion performance of superhydrophobic surface film on Q235 steel substrate

[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 617

[本文引用: 1]

张方铭, 曾志翔, 王 刚 .

Q235钢超疏水表面制备及耐蚀性能研究

[J]. 中国腐蚀与防护学报, 2016, 36: 617

DOI      [本文引用: 1]

采用化学刻蚀与低表面能修饰的方法在Q235钢基体上制得超疏水表面。通过扫描电镜 (SEM)、激光共聚焦显微镜 (CLSM) 、接触角测量仪研究了刻蚀液组成对金属表面粗糙度以及润湿性的影响。利用电化学工作站对其表面防腐性能进行了测试。结果表明:通过化学刻蚀和低表面能物质修饰相结合的方法成功地制备了超疏水表面;刻蚀液中硝酸的浓度对金属表面粗糙度起主要作用,随着刻蚀液中硝酸浓度的增加,粗糙度呈现先增大后减小的趋势。通过在粗糙结构表面构筑低表面能涂层可以获得超疏水表面,经浓度为20% (质量分数) 硝酸刻蚀液刻蚀的表面涂覆二甲基硅氧烷 (PDMS) 后,疏水性最佳,接触角为163°。电化学数据表明,超疏水金属表面具有较好的防腐性能,这主要是由超疏水表面的空气层、PDMS层和疏水金属表面三者的协同作用形成的腐蚀抑制作用。

Qiu Z H, Qiu R, Xiao Y M, et al.

Slippery liquid-infused porous surface fabricated on CuZn: a barrier to abiotic seawater corrosion and microbiologically induced corrosion

[J]. Appl. Surf. Sci., 2018, 457: 468

DOI      URL     [本文引用: 2]

Song F, Wu C Q, Chen H L, et al.

Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces

[J]. RSC Adv., 2017, 7: 44239

DOI      URL     [本文引用: 2]

Nie X H, Du C W, Li X G.

Influence of temperature on the corrosion behavior and mechanism of Q235 steel in Dagang soil

[J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 48

[本文引用: 1]

聂向晖, 杜翠薇, 李晓刚.

温度对Q235钢在大港土中腐蚀行为和机理的影响

[J]. 北京科技大学学报, 2009, 31: 48

[本文引用: 1]

Chen T C, Xiang J H, Jiang L F, et al.

High-temperature corrosion behavior of Q235 steel in oxidizing atmosphere containing chlorine

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 560

[本文引用: 1]

陈土春, 向军淮, 江龙发 .

Q235钢在氧化性含Cl气氛中的高温腐蚀行为

[J]. 中国腐蚀与防护学报, 2021, 41: 560

DOI      [本文引用: 1]

研究了500和600 ℃下N<sub>2</sub>-0.26%HCl-1.6%O<sub>2</sub>-3.2%CO<sub>2</sub>混合气体中Q235钢的高温腐蚀行为。结果表明,在两个温度下Q235钢均出现了明显的腐蚀增重。随着温度的升高,腐蚀速率迅速增加。在两个温度下形成的氧化膜比较类似,分层明显,外层为较厚的Fe<sub>2</sub>O<sub>3</sub>层,内层为Fe<sub>3</sub>O<sub>4</sub>。大部分氧化膜表面出现了剥落和起皮,600 ℃下更为严重,而且在此温度下Fe<sub>3</sub>O<sub>4</sub>层中出现了大量孔洞。Q235钢的腐蚀符合“活化氧化机制”,在600 ℃温度下尤为明显,即挥发性的金属氯化物在金属与氧化膜界面处形成,向外挥发扩散,最终在氧压较高的区域生成金属氧化物。因此,在氧化性含Cl气氛中,Q235钢不适合在500 ℃以上的工况中使用。

Ouyang Y B, Cao Q, Li B Z, et al.

Nanofluid-infused slippery surface: bioinspired coating on Zn with high corrosion inhibition performance

[J]. Colloids Surf., 2021, 608A: 125492

[本文引用: 1]

Xie J, Hu J, Lin X D, et al.

Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles

[J]. Appl. Surf. Sci., 2018, 457: 870

DOI      URL     [本文引用: 1]

Deng R, Shen T, Chen H L, et al.

Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?

[J]. J. Mater. Chem., 2020, 8A: 7536

[本文引用: 1]

Xing K, Li Z X, Wang Z R, et al.

Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys

[J]. Chem. Eng. J., 2021, 418: 129079

DOI      URL     [本文引用: 1]

Zhao S R, Shen T, Li Y T, et al.

Epoxy-resin-based slippery liquid infused anti-icing coating based on breath figure

[J]. Acta Polym. Sin., 2021, 52: 1622

[本文引用: 1]

赵书瑞, 申 婷, 李玉堂 .

基于呼吸图法的环氧树脂基超滑液体灌注防冰涂层

[J]. 高分子学报, 2021, 52: 1622

[本文引用: 1]

Yao W H, Chen Y H, Wu L, et al.

Preparation of slippery liquid-infused porous surface based on MgAlLa-layered double hydroxide for effective corrosion protection on AZ31 Mg alloy

[J]. J. Taiwan Inst. Chem. Eng., 2022, 131: 104176

DOI      URL     [本文引用: 3]

Yang P G, Zheng Y, Peng R C, et al.

Fabrication and corrosion resistance of superhydrophobic PDMS-SiO2/PANI coating on A3 steel

[J]. Mater. Prot., 2018, 51(5): 12

[本文引用: 1]

杨品高, 郑 玉, 彭瑞超 .

A3碳钢表面PDMS-SiO2/PANI超疏水膜的制备及其防腐蚀性能

[J]. 材料保护, 2018, 51(5): 12

[本文引用: 1]

Tong W, Xiong D S, Zhou H J.

TMES-modified SiO2 matrix non-fluorinated superhydrophobic coating for long-term corrosion resistance of aluminium alloy

[J]. Ceram. Int., 2020, 46: 1211

DOI      URL     [本文引用: 1]

/